SP85 GNSS Receiver User Guide

SPECTRA®
GEOSPATIAL

Legal Notices

©2019 Trimble Inc. All rights reserved.

All product and brand names mentioned in this publication are trademarks of their respective holders

SP85 User Guide, Rev. A. December 2019.

Limited Warranty Terms and Conditions

Product Limited Warranty. Subject to the terms and conditions set forth herein, Trimble Inc. ("Trimble") warrants that for a period of two (2) years from date of purchase this Spectra product (the "Product") will substantially conform to our publicly available specifications for the Product and that the hardware and any storage media components of the Product will be substantially free from defects in materials and workmanship.

Product Software. Product software, whether built into hardware circuitry as firmware, provided as a standalone computer software product, embedded in flash memory, or stored on magnetic or other media, is licensed solely for use with or as an integral part of the Product and is not sold. The terms of the end user license agreement govern the use of the Product Software, including any differing limited warranty terms, exclusions and limitations, which shall control over the terms and conditions set forth in the limited Product warranty.

Warranty Remedies. If the Product fails during the warranty period for reasons covered by this limited warranty and you notify us of such failure during the warranty period, we will repair OR replace the nonconforming Product with new, equivalent to new, or reconditioned parts or Product, OR refund the Product purchase price paid by you, at our option, upon your return of the Product in accordance with our product return procedures then in effect.

Notices

This device complies with RF radiation exposure requirements set forth for the general population (uncontrolled exposure).

This device must not be collocated or operated in conjunction with any other antenna or transmitter and it must be installed to provide the following separation distances from all persons:

- 45 cm for SP85 with UHF radio
- 20 cm for SP85 without UHF radio

USA

Supplier's Declaration of Conformity

We, Trimble, declare under sole responsibility that the product: SP85 GNSS receiver complies with Part 15 of FCC Rules.

Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference,
- (2) and this device must accept any interference received, including interference that may cause undesired operation.

Trimble Inc. 10368 Westmoor Dr. Westminster, CO 80021 Class B Statement - Notice to Users. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the manufacturer or registrant of this equipment can void your authority to operate this equipment under Federal Communications Commission rules.

Canada

The digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

This device contains licence-exempt transmitter(s)/ receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

- (1) This device may not cause interference.
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de Classe B prescrites dans le règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Europe

Hereby, Trimble, declares that the SP85 GNSS receiver is in compliance with the following direc-

- RED 2014/53/EU
- RoHS Directive 2011/65/EU.

Information about included radio modules:

GSM Modem:

2G: 850/950 MHz; Radiated power +33 dBm 2G: 1800/1900 MHz; Radiated power +30 dBm 3G/UMTS: 800/850/900/1900/2100 MHz; Radiated power +24 dBm

- Bluetooth radio: Frequency band 2402-2480 MHz, max RF radiated output power:
- WiFi: Frequency band 2400-2483 MHz, max RF radiated output power: < +20 dBm.
- UHF radio: Frequency band 403-473 MHz, max RF radiated output power +40 dBm.

If external UHF antennas are used together with the product, the following antennas shall be used:

- Whip 1/4 wave, connected directly to the internal UHF module.
 - Trimble PN: 44085-42 for low frequency band: 410-430 MHz.
 - Trimble PN: 44085-46 for high frequency band: 430-470MHz.
- UHF whip antenna Procom half-wave, if connected through a TNC cable to an external antenna:
 - Trimble PN: C3310190 for 410-430MHz
 - Trimble PN: C3310196 for 430-450MHz
 - Trimble PN: C3310188 for 450-470MHz

If the SP85 is used with UHF radio the following UHF radio module shall be used:

Trimble part number: 89941-01 (UHF Unit).

The products covered by this guide may be operated in all EU member countries (BE, BG, CZ, DK, DE, EE, IE, EL, ES, FR, HR, IT, CY, LV, LT, LU, HU, MT, NL, AT, PL, PT, RO, SI, SK, FI, SE, UK), Norway, and Switzerland.

European Union Customers: WEEE

For product recycling instructions and more information, please go to https://spectrageospatial.com/ weee-and-rohs/.

Recycling in Europe: To recycle Spectra WEEE (Waste Electrical and Electronic Equipment products that run on electric power), call +31 497 53 24 30 and ask for the "WEEE Associate". Or, mail a request for recycling instructions to:

Trimble Europe BV c/o Menlo Worldwide Logistics Meerheide 45 5521 DZ Eersel, NL

Rechargeable Lithium-ion Batteries

This receiver uses one or two rechargeable Lithium-ion batteries.

WARNING - Do not damage the rechargeable Lithium-ion battery. A damaged battery can cause an explosion or fire, and can result in personal injury and/or property damage. To prevent injury or dam-

- . Do not use or charge the battery if it appears to be damaged. Signs of damage include, but are not limited to, discoloration, warping, and leaking battery fluid.
- · Do not expose the battery to fire, high temperature, or direct sunlight.
- Do not immerse the battery in water.
- Do not use or store the battery inside a vehicle during hot weather.
- Do not drop or puncture the battery.
- · Do not open the battery or short-circuit its con-

WARNING - Avoid contact with a rechargeable Lithium-ion battery if it appears to be leaking. Battery fluid is corrosive, and contact with it can result in personal injury and/or property damage. To prevent injury or damage:

- If a battery leaks, avoid contact with the battery fluid.
- If battery fluid gets into your eyes, immediately rinse your eyes with clean water and seek medical attention. Do not rub your eyes!
- · If battery fluid gets onto your skin or clothing, immediately use clean water to wash off the battery fluid.

WARNING - Charge and use the rechargeable Lithium-ion battery only in strict accordance with the instructions. Charging or using the battery in unauthorized equipment can cause an explosion or fire. and can result in personal injury or/and equipment damage. To prevent injury or damage:

- Do not charge a battery if it appears to be damaged or leaking.
- The SP85 must be powered by a Class II, IEC60950-1 certified LPS AC/DC adaptor.

CHARGE THE BATTERIES ONLY IN THE TEM-PERATURE RANGE 0° to +40°C (32° to 104°F), at a maximum altitude of 2,000 meters (6,562 feet).

- · Discontinue charging a battery that gives off extreme heat or a burning odor.
- Use the battery only in Spectra equipment that is specified to use it.
- Use the battery only for its intended use and according to the instructions in the product documentation.

Disposing of Rechargeable Lithium-ion Battery

Discharge Lithium-ion battery before disposing of it. When disposing of a battery, be sure to do so in an environmentally sensitive manner. Adhere to any local and national regulations concerning battery disposal or recycling.

Receiver Use and Care

The receiver can withstand the rough treatment that typically occurs in the field. However, the receiver is a high-precision electronic instrument and should be treated with reasonable care.

CAUTION - Operating or storing the receiver outside the specified temperature range can damage it. For more information, see Physical Specifications in this guide.

High-power signals from a nearby radio or radar transmitter can overwhelm the receiver circuits. This does not harm the instrument, but it can prevent the receiver from functioning correctly. Do not use the receiver within 400 meters (1312 feet) of powerful radar, television or other transmitters. Low-power transmitters such as those used in cell phones and two-way radios do not normally interfere with receiver operations.

For more information, contact your Spectra distributor.

Bluetooth Radio

The radiated output power of the wireless radio is far below the FCC radio-frequency exposure limits. Nevertheless, the wireless radio shall be used in such a manner that the Spectra receiver is 20 cm or further from the human body.

The internal wireless radio operates within guidelines found in radio-frequency safety standards and recommendations, which reflect the consensus of the scientific community. Spectra Geospatial therefore believes the internal wireless radio is safe for use by consumers.

The level of energy emitted is far less than the electromagnetic energy emitted by wireless devices such as mobile phones. However, the use of wireless radios may be restricted in some situations or environments, such as on aircraft. If you are unsure of restrictions, you are encouraged to ask for authorization before turning on the wireless radios.

COCOM Limits

The US Department of Commerce requires that all exportable GNSS products contain performance limitations so that they cannot be used in a manner that could threaten the security of the United States.

The following limitation is implemented on the receiver: Immediate access to satellite measurements and navigation results is disabled when the receiver's velocity is computed to be greater than 1000 knots, or its altitude is computed to be above 17,000 meters (59,055 feet). The receiver continuously resets until the COCOM situation is cleared.

Technical Assistance

If you have a problem and cannot find the information you need in the product documentation, contact your local distributor. Alternatively, request technical support using the Spectra website at <u>www.spectra-geospatial.com</u>.

Your Comments

Your feedback about the supporting documentation helps us improve it with each revision. Email your comments to documentation_feedback@spectraprecision.com.

UHF Radios

Regulations and Safety. The receiver may be fitted with an internal radio as an option. It can also be connected to an external UHF radio.

Regulations regarding the use of Ultra High Frequency (UHF) radio-modems vary greatly from country to country. In some countries, the UHF kit may be used without obtaining an end-user license. Other countries require end-user licensing, For licensing information, consult your local Spectra dealer.

Before operating the receiver with the UHF kit, determine if authorization or a license to operate the UHF kit is required in your country. It is the end-user's responsibility to obtain an operator's permit or license for the location or country of use.

Exposure to RF energy is an important safety consideration. The FCC has adopted a safety standard for human exposure to radio-frequency electromagnetic energy.

Proper use of this radio modem results in exposure below government limits. The following precautions are recommended:

- DO NOT operate the transmitter when someone is within 45 cm (17.7 inches) of the antenna.
- DO NOT collocate (place within 20 cm) the radio antenna with any other transmitting device.
- DO NOT operate the transmitter unless all RF connectors are secure and any open connectors are properly terminated.
- DO NOT operate the equipment near electric blasting caps or in an explosive atmosphere.
- All equipment must be properly grounded according to Spectra installation instructions for safe operation
- All equipment should be serviced only by a qualified technician

ϵ

Declaration of Conformity

Issuer's name:

Trimble Europe BV

Meerheide 45 5521 DZ Eersel NETHERLANDS

Object of declaration:

SP85

P/N 118893-00

Approved accessory:

UHF unit p/n 89941-02

UHF Low frequency antenna p/n 44085-42 UHF High frequency antenna 44085-46

This declaration of conformity is issued under the sole responsibility of the manufacturer. The object of declaration described above is in conformity with the essential requirements of directives 2014/65/EU (RED) and 2011/65/EU (ROHS), including its subsequent amendments, based on the following European harmonised standards:

- EN 62 311:2018
- EN 62 479:2010
- EN 62 368-1:2014
- EN 55 032:2012
- EN 55 035:2017
- EN 61 000-3-2:2013
 EN 61 000-3-3:2014
- EN 301 489-1 V2.2.1
- EN 301 489-5 V2.1.0
- EN 301 489-17 V3.2.0

- EN 301 489-19 V2.1.0
- EN 301 489-52 V1.1.0
 - EN 301 908-1 V11.1.1
- EN 303 413 V1.1.1
- EN 300 328 V2.1.1
- EN 301 511 V12.5.1
- EN 300 113 V2.2.1

For detailed information on how compliance with the above directives are fulfilled, see Technical File 57115038.

Signed for and on behalf of:

Trimble BV

Date:

November 23rd, 2019

Igor Grechkin, Senior Director of Engineering

Trimble.

Doc no. 57116038 Rev. A

Table of Contents

About Spectra SP85	1
SP85 Packout	2
Standard Accessories	
Optional Accessories	3
Other Optional Accessories	4
Discover Your New Equipment	5
Front Panel	
Bottom View	
Right-Side View	
Left-Side View	
Phase Center Location	
Height Mark	
Special Key Combinations	
Screen Illumination & Buzzer	
Using SP85 for the First Time	
Charging the Batteries	
Inserting the Batteries	
Inserting Cards	
Setting up the Receiver	
Running a Survey	
Ending the Survey	
Front Panel Displays	
Welcome Screen	
General Status	
Memory/SD Card	
Receiver Identification	
Position Solution	
eLevel Screen	
Devices	
Bluetooth Pairing	
ATL Recording Screen	
Modem Power Control Screen	
Wifi Power Control Screen	
Interface Language Screen	
Power Off Screen	
Raw Data Recording Screen	
Monitoring Batteries	
Conventions Used	
Possible Battery Statuses in the Field	
Possible Battery Statuses With AC/DC Power Block Used	
Possible Error Statuses	
Remote Battery Monitoring	
Lithium-lon Rattery Storage	

Introducing SP85 as Rover	33
Network Rover	
Rover Using Local Base	33
Other Use Cases	34
Trimble RTX	
Backup RTK	
UHF Networking	
RTK Bridge	
Introducing SP85 as Base	
Network Base	
Local Base	
UHF Networking	
Internal vs. External Power Source	
Configuring SP85 With Survey Pro	
Trimble RTX	
Backup RTK	
UHF Networking - Bases	
UHF Networking - Rover	
RTK Bridge	44
Base Offering Two Independent Transmission Channels for Delivering Corrections	, ,
Configuring the SP85 WiFi Device	
Recording/Downloading GNSS Raw Data	
Data Recording Flowchart	
Step-by-Step Procedure	
Charging Batteries - Using External Power	
Batteries Vs. External Power Source	
Charging Batteries, Scenario #1	
Using Cable P/N 59044-10-SPN from the Office Power Kit	
Using Cable P/N 95715 from the Field Power Kit	
Anti-Theft and Startup Protections	
Anti-Theft Protection	
Purpose	
Enabling/Disabling the Anti-Theft Protection	
How the Receiver Operates With the Anti-Theft On	
What the Anti-Theft Protection Does Initially	
What Events Will Trigger a Theft Alarm?	
What Will Happen When a Theft is Detected?	
What if the Thief Removes the Batteries?	57
Disabling Anti-Theft Before Turning Off the Receiver	57
Lost your Anti-Theft Password?	
The Theft Alarm is Part of the Level-1 Alarms List	58
Startup Protection	
Purpose	
Enabling/Disabling Startup Protection	
How SP85 Operates with Startup Protection Active	
Difference Between Startup and Anti-Theft Protections	
Shared Resources	
Can Anti-Theft and Startup Protections Be Both Active? Using Anti-Theft and Startup Protections in Survey Pro	
USING AND THEIR AND STAILUP FIVE COURS IN SUIVEY PIO	

Alerts Tab	60
Anti-Theft tab	
Managing Contacts and Notifications	62
Enabling/Disabling the Anti-Theft Protection	
Communicating with SP85 Using a Mobile Phone	64
Introduction	64
Commands List	
ANH: Setting Antenna Height	
ANR: Setting Antenna Reduction Mode	
ATH: Setting Anti-Theft	
GETID: Reading Receiver Identification Information	
GETMEM: Reading Memory Status	
GETPOS: Reading Computed Position	
GETPOWER: Reading Receiver Power Status	
HELP: Reading the List of Commands	
MEM: Setting Current Memory	
MODE: Setting Receiver Mode	
POS: Setting Reference Position	
RADIO: Setting the Radio	
REC: Setting the Recording Mode	
SEND LOG: Emailing Log Files	
SEND PAR: Emailing Receiver Parameters	
Using the SP85 Built-in Electronic Tiltmeter	
Benefit	
Rover Setup	
Calibration Methods	
Calibrating the Tiltmeter in Standalone Mode	
Calibrating the Tiltmeter With Survey Pro	
Using the eLevel in Survey Pro	
Using the UHF Kit Option	
Installing the UHF Module into the Receiver	
Configuring the UHF Module	
Completing Rover Radio Setup	
Completing Rover Radio Setup With External UHF Antenna	
Completing Base Radio Setup With Internal UHF Antenna	
Running the SP85 Web Server Interface	
Introduction	
WiFi in Access Point Mode	
WiFi in Client Mode	
Connecting to a WiFi Network Using Survey Pro	
Appendix	
Spectra Loader Software Utility	
Installing Spectra Loader	
Getting Started With Spectra Loader	
Upgrading Receiver Firmware	9
Installing a Firmware Option	
Activating a CenterPoint RTX Subscription	
Reading Receiver Warranty Expiration Date	
Spectra File Manager Software Utility	
Installing Spectra File Manager	
Connecting SP85 to your Computer	
Getting Started With Spectra File Manager	

Establishing a Connection with the Receiver	100
Copying Files to the Office Computer	100
Deleting Files from the Receiver	100
Restoring Factory Settings	101
Alerts	102
Technical Specifications	103
GNSS Characteristics	103
Real-Time Accuracy (RMS)	103
Real-Time Performance	104
Post-Processing Accuracy (RMS)	104
Data Logging Characteristics	104
Physical Characteristics	104
Standard & Optional System Components	
Data Collectors and Software	106

About Spectra SP85

The Spectra SP85 is a next generation GNSS receiver that combines decades of GNSS RTK technology with a revolutionary new GNSS processing.

Featuring the new 600-channel "76" chipset combined with the patented Z-Blade™ technology, the SP85 system is optimized for tracking and processing signals from all GNSS constellations in challenging environments.

With unmatched connectivity in the GNSS receiver market, the SP85 offers a unique combination of integrated 3.5G cellular, WiFi and UHF communications with SMS, email and anti-theft technology.

Trimble RTX is available for the SP85 GNSS receiver via L-Band satellite in regions without cellular infrastructure, and also via cellular/IP delivery. The premium service, CenterPoint® RTX, is the most accurate satellite-delivered correction service available today. With the SP85 GNSS receiver and a Trimble RTX correction service, high-accuracy positioning is achievable nearly anywhere in the world - even in areas without cellular service.

These powerful capabilities, packaged in an ultra-rugged housing and patented antenna design, make the SP85 an extremely versatile turnkey solution that can be used with unlimited operation time thanks to its two hot-swappable batteries.

The key features of the SP85 are:

- Patented Z-Blade® technology
- Up to 600-channel 7G ASIC
- Hot-swappable batteries
- · Internal TxRx UHF radio
- L-Band satellite capable GNSS antenna
- 3.5G cellular modem
- · Built-in WiFi communication
- SMS and e-mail alerts
- Anti-theft technology
- Backup RTK and RTK Bridge
- eLevel technology
- Trimble® RTX correction services
- Up to 20 Hz update rate.

NOTE: Spectra Geospatial reserves the right to make changes to the lists of items provided below without prior notice.

Standard Accessories

The SP85 GNSS Single Receiver Kit (P/N 119786-00) consists of the following items.

Picture	Spare Part (1)
	(Not Applicable)
d sources	92670-15 (one battery)
M	109000-SPN
	107000
	78651
18. Partition of the second of	93374-10
	88400-50-SPN
Di	EGL-Z2001
	104342-10
	95858-10
	(Not Applicable)
	Picture Picture Picture

⁽¹⁾ When applicable, the items part of the standard packout may be ordered separately as spare parts, using the P/Ns specified in this column.

NOTE: The SP85 User Guide may be downloaded from:

https://spectrageospatial.com/sp85-gnss-receiver/

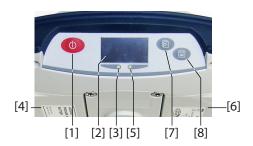
Optional Accessories

Three different kits are available as optional accessories.

Item	Picture	Spare Part (1)
UHF Kit P/N 92673-10 (2):		
UHF Module		(Not Applicable)
Base Pole Extension, 25 cm (9.5") long, with oblong aperture		95672
Coaxial adapter cable (for use with P/N 95672)		96845
Rover Range Pole, 1.75 m (5.74 ft) long, fiberglass, two parts, with specific tapping on top part		106815
Soft Bag for Range Pole		95860-10
T25 Torx Screwdriver, "L" shaped		(Not Applicable)
Field Power Kit P/N 94335:		
Power cable, 0.6 m, 7P Lemo to SAE		95715
Power cable, 1.8 m, SAE to battery clips (3)		83223-02-SPN
Office Power Kit P/N 94336:		'
Power/Data cable, 1.5 m, DB9-f to OS/7P/M to SAE		59044-10-SPN
Adapter cable, 0.15 m, SAE to DC socket (2.1 mm)		88769-SPN
RS232-to-USB adapter cable		90938-SPN

When applicable, the items part of these three SP85-specific kits may be ordered separately as spare parts, using the P/Ns specified in this column.
 DOES NOT include the UHF antenna. See other optional accessories below.

⁽³⁾ If you need to change the fuse on this cable, please use the same type of fuse as the one originally provided (15 A @32 V). This is mandatory.


Other Optional Accessories

Item	Ordering P/N:	Picture
Single soft bag (for one receiver)	206490-10	aprotra/
UHF whip antenna, Procom, half-wave, with TNC adapter: • 410-430 MHz • 430-450 MHz • 450-470 MHz UHF whip antenna, ¼ wave, with TNC adapter: • 410-430 MHz	C3310190 C3310196 C3310188	
• 430-470 MHz	67410-11	
ADL Vantage Pro Accessories Kit. Choose P/N according to UHF band used: 450-470 MHz 430-450 MHz 410-430 MHz The kit includes the following items: Unity-gain antenna (compatible with chosen band, see above) Range pole mount Tripod mount system HPB-Battery bag with cables (specific to ADL Vantage Pro) HPB-Programming cable	87400-10 87400-20 87410-10	
(ADL Vantage Pro unit NOT included in the kit.)		
ADL Vantage Accessories Kit. Choose P/N according to UHF band used: • 450-470 MHz • 430-450 MHz • 410-430 MHz The kit includes the following items: • Unity-gain antenna (compatible with chosen band, see above) • Range pole mount • Tripod mount system • HPB-Battery bag with cables (specific to ADL Vantage) • HPB-Programming cable (ADL Vantage unit NOT included in the kit.)	87330-10 87330-20 87310-10	
Validage unit 1401 included in the Kit.)		
Y cable, receiver-to-PacCrest HPB & Battery, 3.0 m (OS7P to 1S5P)	PCC-A02507	10

Discover Your New Equipment

Take a few minutes to discover your new SP85.

Front Panel

- [1]: Power button. Hold the button depressed for about two seconds to turn on or off the receiver.
- [2]: Display screen
- [3]: Battery A LED indicator.
- [4]: Battery A compartment.
- [5]: Battery B LED indicator.
- [6]: Battery B compartment.

 [7]: Scroll button. Press this button to scroll through all the display functions (including alarm screens if any). Also used to accept or reject prompts in some particular contexts.

 [8]: Log button. From the General Status screen, press this button to start or stop GNSS raw data recording. From all other screens, pressing this button takes you back to the General Status screen. Also used to accept or reject prompts in some particular contexts.

NOTE: Pressing these buttons simultaneously gives access to special receiver functions. See all the possible combinations in *Special Key Combinations on page 10*.

Bottom View

- [7]: Front panel (see details above)
- [8]: Battery A compartment trapdoor
- [9]: Battery B compartment trapdoor

[10]: Power/data connector (DC input + RS232 serial port
 A). The connector socket is protected by a black rubber cap
 attached to the receiver case. Always keep the protection
 cap on when the connector is not used. This cap is a non polarized one.

IMPORTANT: When you connect a cable to that connector, be sure you align the red markings (a red dot on the plug, a red line on the socket) before pushing the Lemo plug in. Conversely, when it's time to disconnect the Lemo plug, please use the attached metal strap to pull the plug out.

- [11]: 5/8" threaded insert. This part is securely mounted on a removable plate, thus making up an assembly that can be replaced with a UHF module (optional accessory) fitted with its own, specific threaded hole and central coaxial socket for antenna connection (see *Using the UHF Kit* Option on page 80).
- [12]: Shock absorber making up a robust protection belt for the receiver against drops to the ground. The shock absorber houses two flaps for access to two card slots and to a USB connector. The height mark is also nested in the shock absorber. See below.

Right-Side View

- [13]: SD card holder. An SD Card is a removable memory extension that can be used to:
 - Record GNSS raw data
 - Copy G-files from the internal memory
 - Or install firmware upgrades

Maximum capacity according to SDHC standard: 32 GB The SD Card should be inserted into the receiver with its label side oriented downward (pins upward).

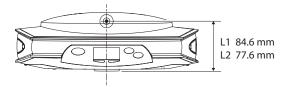
[14]: Standard (Mini) SIM card holder. A SIM card is required to operate the internal cell modem when the receiver is used in Direct IP, NTRIP or CSD. Please contact your Internet Service Provider (ISP) to get the SIM card you need. The SIM card should be inserted into the receiver with its label side oriented downward (visible chip upward).

WARNING - MAKE SURE YOU INSERT THE SIM CARD INTO THE SIM CARD HOLDER AND NOT ELSEWHERE.

 [15]: Rubber flap protecting the SD card and SIM card holders. To preserve watertightness, ALWAYS KEEP FULLY CLOSE when you don't need to access the card slots.

Left-Side View

- [16]: Rubber flap protecting the USB connector. To preserve watertightness, ALWAYS KEEP FULLY CLOSE when you don't need to use the USB port.
- [17]: USB connector emulating standard RS232 serial port (port B). Used typically for downloading/deleting files using Spectra File Manager, or upgrading firmware/warranty date using Spectra Loader.


The first time you connect the SP85 to a computer through a USB connection, the required driver will automatically be installed on the computer. If however the installed driver does not work, you may replace it with one of the two drivers posted on the Spectra Geospatial website:

https://spectrageospatial.com/sp85-gnss-receiver/

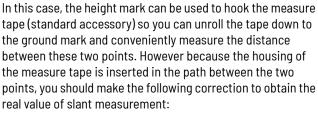
USB driver for 64-bit OS: SpectraPrecisionUSBSerialSetup_x64.exe file USB driver for 32-bit OS: SpectraPrecisionUSBSerialSetup_x86.exe file Double-click on the downloaded file to install the driver.

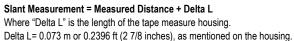
Phase Center Location

See diagram below. These are relative measurements.

The field software usually calculates the real height of the instrument, based on the location of the L1 phase center.

Whether you provide a vertical or slant measurement of the antenna base (ARP), the field software you are using should be able to deduce the real height of the instrument, using the preloaded dimensional parameters (antenna radius, etc.) specific to the model of GNSS antenna used.


In the case of a slant measurement, the software will also use the radius of the antenna to determine the instrument height.


Height Mark

The height mark ([18]) is nested on the shock absorber diagonally to the front panel.

When the receiver is mounted on a tripod – for use as a base for example – making a slant measurement to determine the instrument height is often more convenient than making a vertical measurement from the ground mark to the antenna base.

When the field software requests your input to determine the instrument height, you will then choose to enter the slant measurement, rather than the vertical one. The software will then be able to deduce the real height of the instrument from the known dimensional parameters of the antenna and the slant measurement you will have entered.

Special Key Combinations

The SP85 has three different key combinations requiring that the receiver be initially turned off. See table below for details.

Key combination	Function
+ (Power + Scroll buttons)	Starts a firmware upgrade sequence from the file stored in the SD Card.
+ (Power + Log buttons)	Enters the Service mode in which the UHF module, if any, is temporarily connected to the receiver's serial port A for radio settings. Refer to <i>Using the UHF Kit Option on page 80</i> .
(Power + Scroll + Log buttons)	Restores factory settings (see list in Restoring Factory Settings on page 101).

Screen Illumination & Buzzer

Screen illumination is automatically turned off if no button has been pressed for 10 minutes of receiver operation. The screen will then become entirely blank.

Screen illumination will be reactivated through one of the following actions or events:

- By pressing shortly on the Log or Scroll button, which will then recover their usual functions,
- On inserting an SD Card into the receiver,
- · On occurrence of an alarm.

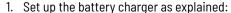
The buzzer can be heard in the following cases:

- When your data collector establishes a Bluetooth connection with the receiver,
- On occurrence of an alarm.

Using SP85 for the First Time

Prior to setting up and using your equipment, be sure you understand the meaning of the following symbols found on the labels of your equipment:

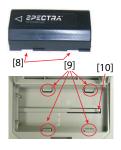
- On AC/DC Power Supply block and charger:
 - \(\sum \): Alternating current (AC)
 - ==: Direct current (DC)
 - L: Class II equipment symbol
 - A: Caution symbol
 - O : Indicates the polarity of the DC output. The positive terminal is the central conductor; the negative terminal is the surrounding conductor.
- On SP85 GNSS Receiver:
 - : WEEE icon on one of the labels. Indicates that special instructions should be observed when you wish to dispose of the equipment. See third page in this guide.
 - O: Power button: Used to turn on or off the SP85. See page 5 for full description.
 - Scroll button: Controls the front panel display.
 Used to scroll through the different functions of the receiver. See page 5 for full description.
 - (a): Log button. Used to start/stop GNSS raw data recording. See page 5 for full description.


WARNING - This receiver uses one or two rechargeable Lithium-ion batteries. To avoid personal injury or equipment damage, make sure that you read and understand the safety information at the front of this guide.

The batteries are shipped partially charged. Depending on the time elapsed since then, the remaining charge may be even less. For this reason, you should first recharge the batteries completely before first use. (See warnings and safety information at the front of this guide.)

Charging the Batteries

WARNING: Use exclusively the battery provided. This is an IEC 62133 certified battery which meets the electrical specifications mentioned on *page 2*. There is a risk of explosion if you do not use this type of battery.


- Connect the output cable ([1]) of the AC/DC power block ([2]) to the battery charger input ([3]).
- Choose the power cord ([4]) that is suitable for your country.
- Connect the end of the power cord to the AC/DC block input ([5]), and the other to a power outlet ([6]). This powers up the battery charger, causing the POWER LED to turn solid green.
- Insert the two batteries ([7]) onto the battery charger (give the right orientation to the battery). For each battery, the CONTACT LED will turn solid orange when the battery is detected. The CHARGE LED will start blinking green at a fast rate to indicate that the battery is being charged.
- The batteries charge simultaneously. This will take a few hours. When a battery reaches full charge, the corresponding CHARGE LED turns solid green.
- 4. Remove the batteries from the charger when fully charged. NOTE: The batteries may be left on the charger for an indefinite period of time without causing any damage to the charger or the batteries.

CAUTION. The power plug serves as a network disconnection device. Ensure that the device connecting plug is readily accessible so that it can be pulled out easily when necessary, without having to push other devices out of the way.

Inserting the Batteries

[11]

Each battery is fitted with four recesses, two on each side (see [8]).

These allow you to slide the battery into tabs located at the bottom of the compartment (see [9]).

Once the battery is fully inserted, a stop mechanism ([10]) is released by the battery to secure the electrical connection to the receiver (this mechanism prevents the battery from moving longitudinally).

The combination of these two mechanisms (slide + stop) will guarantee a secure electrical connection to the receiver in all circumstances.

The two battery compartments are accessible from underneath the receiver. Follow this procedure to insert a battery into its compartment:

- 1. Turn the receiver upside down.
- 2. With a finger, push the snap-in hook inward to unlock the trapdoor (see [11]), then pull it open (see [12]).
- 3. Give the right orientation to the battery, prop it against the right inner side of the compartment (see [13]), then push the battery in so that it fits into the four tabs.
- 4. Push the battery fully to the left (see [14]). This releases the stop mechanism underneath the battery.

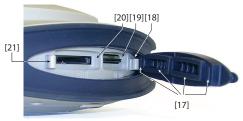
- Close the trapdoor: It is good practice to use your two thumbs pushing thoroughly from the two corners of the trapdoor. By doing this, you will lock the snap-in hook properly and you will make the battery compartment fully waterproof.
- 6. Put back the receiver the right way up.

When later the receiver is placed on top of a pole, you will be able to safely remove/replace a discharged battery (it won't drop when you open the compartment) while the receiver continues to operate normally, tacking satellites, being powered from the other battery.

NOTE: The batteries will be used one after the other. The receiver will determine which battery should be used first.

Inserting Cards

A **SIM card** is needed to operate the internal modem when the receiver is used in Direct IP, NTRIP or CSD mode.


You may also want the receiver to record GNSS raw data on an **SD card** rather than in its internal memory.

In either case, insert the card through the procedure described below:

- 1. Open the rubber flap with the "SD" and "SIM" markings (on the right), pulling its tongue gently to the right. The tongue is that small part protruding from one end of the flap ([15]).
- 2. Turn the card upside down (label side oriented downward) (see SIM card in [16]), then push it in until you hear a click.

- 3. Put the rubber flap back in place. This is a five-step operation to be observed with care. The inner side of the flap is fitted with molded parts (see [17]) that are intended to fit into the card slots. Starting from the flap hinge, these should be inserted successively into:
 - The block the closest to the hinge ([18])
 - The SIM card holder ([19])
 - The SD card holder ([20])
 - The second block ([21])
 - Then run a thumb along the flap, starting from the hinge and all the way to the other end, exerting pressure as many times as necessary to make sure the flap is thoroughly inserted.

NOTE 1: If you only need to access the SD card holder, you may half-open the rubber flap. To do this, place three fingers on the area marked "SIM" on the flap while grasping the tongue to open the flap halfway (see [22]).

NOTE 2: To remove a SIM or SD card, simply push the card a little bit further in causing the lock mechanism to be released (a click can be heard). Then release the card, which will then be automatically ejected.

Setting up the Receiver

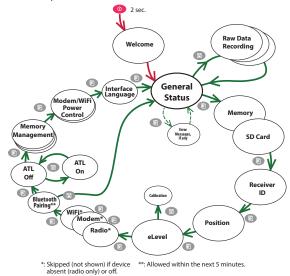
- 1. Mount the receiver and data collector on a range pole (rover), or a tripod (base).
- Measure and write down the vertical or slant distance from the ground mark to respectively the lower part of the receiver (ARP) (rover) or to the height mark (base). This measurement will be required by your field software in a further step.
- 3. Turn on the SP85 by holding depressed for about 2 seconds until the screen lights up. The status LED of the battery being used turns solid green. Let the receiver boot.
- Meanwhile, turn on the data collector and run your field software.

Running a Survey

- Follow the instructions provided by your field software to use the SP85 as desired (rover or base). The receiver will beep when a Bluetooth connection is established with the data collector.
- 2. Start your survey job when ready.
- From time to time, take a look at the battery LEDs on the front panel. As long as the two LEDs are solid green, that means the first battery used has enough energy left to operate the receiver.

When the LED corresponding to the first battery used starts blinking green – first at a slow rate (1 sec), then at a faster rate (5 flashes a second) – that will mean the battery is too low and power will soon switch automatically to the other battery.

Note that there won't be any disruption in receiver operation when passing from the low to the fresh battery. There won't be any disruption either if you replace the low battery with a new fresh one. This third battery will power the receiver later when the second battery gets in turn too low.


Ending the Survey

- 1. After your field survey is complete, hold depressed for about 2 seconds to turn off the SP85.
- 2. Don't forget to charge the batteries at the end of your day. Batteries will charge overnight.

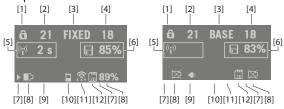
NOTE: Need to download raw data files from the receiver? Refer to Downloading Raw Data Files on page 50.

Front Panel Displays

The diagram below explains how to scroll through the different displays using the **Scroll** button. A detailed description of each of them is provided in this section.

NOTE: The screen shots illustrating this section are only examples. Your receiver may report different information depending on its configuration.

Welcome Screen



This screen appears after about 2 seconds of depressing the Power button. (You may then release this button.)

After about 30 seconds, corresponding to the receiver boot sequence, the General Status screen will appear automatically.

General Status

See examples below for a rover (left) and a base (right). Refer to the tables below for more details on each of the icons or data reported on this screen.

NOTE: In the second column, the slash symbol ("") is used between icons to indicate that these icons occupy the area successively at the indicated displaying rate.

Area	Icon or Data Reported	Meaning
[1]	ô	Anti-theft or/and startup protection active (solid icon).
	①	One or more alarms set (blinking icon). Press the Scroll button as many times as necessary to read and acknowledge the alarms.
	a / 0	One or more alarms set and anti-theft or/and startup protection active. Icons appear in succession every 1 second.
	(Blank)	No alarm set and anti-theft protection inactive.
[2]	{a number}	Number of satellites received (all GNSS's taken together)
[3]	{a text string}	Position solution status: NONE: Position not available AUTO: Autonomous GNSS position DGPS: Differential GNSS position SDGPS: SBAS Differential GNSS position FLOAT: Float solution FIXED: Fixed solution (RTK is operational) RTX: CenterPoint® RTX solution BASE: Receiver configured as a base.
[4]	{a number}	Number of satellites used (all GNSSs taken together).
	Data link information:	
[5]	{x seconds}	For a rover: Corrections received. The age of corrections is displayed after the icon, when available.
	(p)	For a base: Corrections generated and transmitted.
	(Blank)	No corrections received or transmitted.
	Memory information and raw data recording:	
[6]	{percent}	No data recording in progress (static icon). Percentage of free memory in the storage medium used.
	/ [percent]	Data recording in progress (dynamic icon). Percentage of free memory in the storage medium used. Icons appear in succession every 1 second.
[7]	F	Where located, the right arrow indicates which battery is currently used.

Area	Icon or Data Reported	Meaning	
	Batteries:		
[8]	/ {percent}	A battery has been inserted in the compartment and the energy left in the battery is represented both visually and as a percentage. These two indications are shown successively (percentage appears for 1 second every 5 seconds).	
	英	The battery is missing (battery compartment empty).	
[9]	4	The receiver is powered from the AC/DC power block, not by one of its batteries.	
[8] + [9]	/{percent}	(Battery B only) Case where the receiver is powered from the AC/DC power block and battery B is present with a certain percentage of remaining power.	
	Modem:		
	(Blank)	Modem turned off.	
[10]	or all	Modem turned on: Blinking: Not initialized yet Static: Initialized and ready for a connection	
		The vertical bars indicate the signal strength at the modem antenna input. The higher the number of bars the better. The antenna symbol shown in the upper left corner stands for "2G". If the modem detects a 3G network, "3G" is displayed instead.	
	<u></u>	When the signal strength is very weak, four dots appear at the bottom of the icon, instead of vertical bars.	
		Modem on line.	
	WiFi:		
	(Blank)	WiFi turned off.	
[11]	<u></u>	WiFi connection active (1 to 3 waves depending on signal level).(1 wave: no signal yet). (Blinking icon=WiFi Initializing) (Inverted icon: WiFi Access Point)	
	<u>্</u> র	Data being transmitted over Wifi (2 to 3 waves).	
	SD Card, Bluetooth, Radio, USB:		
	CIT SD	SD card present	
	* *	Bluetooth connection active; Pairing allowed.	
	<u> </u>	Internal radio detected, but not used	
[12]	<u>+9+9</u> +9	Internal radio used respectively as receiver, transmitter and repeater	
	C	USB connection active	
	□/*/ (₽/±	Any combination of the five icons is possible. Icons appear in succession every 1 second.	
	(Blank)	No SD card present, No Bluetooth or USB connection active, no internal radio installed.	
	-		

Memory/SD Card

See examples below for Internal Memory (left) and SD card (right).

► Memory 1.4GB Free: 1.2GB 85% G-Files: 8 G0107A13.310

SD-Card 484MB Free: 122MB 25% G-Files: 37

- 1st line: Memory identifier and capacity. If a left arrow appears at the beginning of the line, this means this memory is currently selected to collect data.
- 2nd line: Free memory left (in bytes and percentage of nominal size)
- 3rd line: Number of G-files currently stored in memory
- 4th line: If data recording is in progress, name of the G-file currently created. Otherwise, this line is empty.

Receiver Identification

From top to bottom (see screen example):

- Receiver serial number (SN)
- Firmware version currently installed (FW)
- Receiver Bluetooth name (BT)
- Receiver IP address (IP)

SN: 5327A00107 FW: 1.0 BT: SP_270107

IP: 192.168.1.19

Position Solution

If the receiver is a rover, the displayed position will be the last computed position. The coordinates will be local ("LOC") only if the rover receives specific RTCM messages from the base describing the local system used by the base.

If the receiver is a base, the displayed coordinates are set ones (not computed ones) representing the WGS84 or local reference position assigned to the base.

See screen example for a rover delivering WGS84 coordinates.

- First line: Number of satellites tracked; Current position solution status; Number of satellites used.
- Next three lines: Receiver position. This may be:
 - Either WGS84 coordinates ("W84" displayed at the beginning of the last line). Coordinates are Latitude (2nd line), Longitude (3rd line) and ellipsoidal height (4th line).
 - Or local coordinates ("LOC" displayed at the beginning of the last line). Depending on whether or not a projection is defined in the local coordinate system used, coordinates may be either Easting (2nd line), Northing (3rd line), Elevation (4th line), or Latitude (2nd line), Longitude (3rd line) and Ellipsoidal Height (4th line).

eLevel Screen

This screen displays the magnitude of tilt of the SP85, as measured by the built-in electronic tiltmeter. This information is also forwarded to the data collector screen so you can level the SP85 directly from the data collector screen, just before logging a point.

After the eLevel has been calibrated, the small moving circle on the screen (i.e. the "e-bubble") is empty. The number of days elapsed since the calibration was performed is displayed at the bottom left of the screen, starting the day after the calibration, meaning "0" is never displayed and the first number displayed is "1".

When the eLevel needs calibrating, a cross appears within the small moving circle and the number of elapsed days since the last calibration is no longer valid and so is no longer displayed.

The eLevel can be calibrated directly from the receiver, or from a data collector. For more information, please refer to Using the SP85 Built-in Electronic Tiltmeter on page 75.

17 FIXED 15 47°17'56.2926 N 001°30'32.5897 W W84 +76.36 m

Devices

Devices are always listed in this order: radio (if any), modem and WiFi. See screen examples and descriptions below. If one of these screens is not shown, that means the corresponding device is absent (radio only) or off.

Rover screen example:

D Rx XDL ON 2 445.1625 MHz TRANS 9600 Bds MED FEC SCR 4FSK Radio:

- First line: Receiver port that the radio is connected to (A= external radio; D= internal radio) followed by the radio function ("Rx" for receiver, "Tx" for transmitter), the name of the radio model and its current power status (ON or OFF).
- Second line: Channel number used and its corresponding frequency, in MHz.
- Third line: Protocol used and transmission speed (baud rate).
- Fourth line: See below.

For a rover, current reception sensitivity (low, medium or high), followed by "FEC" (Forward Error Correction) and "SCR" (Scrambling) if these two functions are enabled, followed by the type of modulation used and "REP" if the radio is used as a repeater.

For a base, radiated power (500 mW, 1 W or 2 W), followed by "FEC" (Forward Error Correction) and "SCR" (Scrambling) if these two functions are enabled, followed by the type of modulation used.

Base screen example

D Tx XDL ON 2 445.1625 MHz TRANS 9600 Bds 1 W FEC SCR 4FSK

Modem:

- First line: Current modem status (OFF, ONLINE, READY, DIALING or ON)
- Second line: Identification of the service provider (ISP)
- Third line: Network type (2G or 3G) and measured signal level (in 20% steps: 100%: +43 dBm)
- Fourth line: Connection type (NTRIP or Direct IP) followed by mount point name (in NTRIP), or server address, i.e. host name or IP address (in Direct IP).

GSM ONLINE "Orange F" 3G 60% NTRIP: BRSTO WiFi Access Point SP85_40007 192.168.130.1

Wifi CONNECTED Livebox-093c 80% NTRIP: BRSTO

WiFi

WiFi device in Access Point mode (used to run SP85 Web Server interface):

- First line: "WiFi Access Point"
- 2nd line: Receiver model & S/N (last 6 figures)
- Third line: Fixed IP address of WiFi access point WiFi device in Client mode (used to receive RTK corrections):
- First line: Current WiFi status (CONNECTED, ON, OFF)
- Second line: Identification of the WiFi server
- 3rd line: Signal level (in 20% steps; 100%: +43 dBm)
- Fourth line: Same as Modem's fourth line above.

NOTE 1: When its is powered on from the dedicated display screen (see Wifi Power Control Screen on page 26), the WiFi device is automatically set as a WiFi Access Point. If you ask your field software (Survey Pro) to scan for WiFi devices, then the WiFi device will automatically be switched to client mode. To switch back to WiFi access point, you need to reset the SP85 (see Restoring Factory Settings on page 101).

NOTE 2: The WiFi device cannot be used in client mode and access point mode at the same time.

Bluetooth Pairing

REMINDER: On turning on the receiver, you have 5 minutes to pair it with your data controller via Bluetooth. Once this is done, the Bluetooth connection is active and, more importantly, can later be re-activated automatically without the need for a new pairing sequence.

After these first 5 minutes have elapsed, no pairing is allowed unless you use the Bluetooth Pairing screen described here.
From the Bluetooth Pairing screen, you can do the following:

- Press the Scroll button to go to the next display screen (no new Bluetooth pairing requested), or
- Press the Log button to allow pairing the receiver with your data controller. Bluetooth pairing is made possible for the next 5 minutes, the time for you to establish the connection and have the receiver's Bluetooth module registered on your data controller for future connections.
 During this 5-minute time, the Bluetooth icon on the then displayed General Status screen is as shown on the left.

NOTE: During these 5 minutes, the Bluetooth Pairing screen is no longer accessible. After the 5 minutes have elapsed, no pairing is possible but the Bluetooth Pairing screen is accessible again so you can ask for another 5-minute window if needed.

IMPORTANT: Once a receiver and data controller have gone through the pairing process, they will remain paired in the future after power cycles and will not need to go through the pairing process again together unless the settings on either device are cleared.

ATL Recording Screen

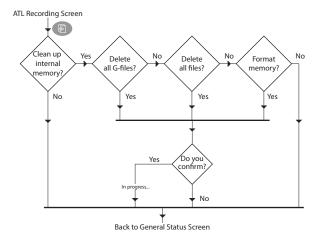
The ATL Recording screen looks like one of the following, depending on whether an SD Card is inserted in the receiver (right-hand screen) or not (left-hand screen).

You don't normally have to record ATL data, but if for troubleshooting purposes, Technical Support asks you to do so, then proceed as follows:

 With the ATL recording screen currently displayed, press the Log button. This will cause the receiver to start recording ATL data on the specified storage medium. The screen will then look like this:

You can then freely use the **Scroll** button to access other screens without affecting the ATL data collection in progress (pressing the **Scroll** button from this screen will take you to the Memory Management screen).

 When enough ATL data have been recorded (Tech Support will normally indicate the duration of ATL data collection needed for troubleshooting), come back to the ATL Recording screen and simply press on the Log button again to stop the recording.


NOTE 1: ATL data recording is totally independent of raw data recording: controlling ATL recording is done exclusively from the ATL recording screen, while raw data recording is controlled from any other screen.

NOTE 2: When ATL recording is in progress, is displayed in area [6] (see *General Status on page 17*). In this icon, the warning triangle symbol, which is indicative of ATL data recording in progress, is dynamic as is the diskette symbol when raw data recording is in progress. Raw data recording and ATL recording may be performed at the same time.

NOTE 3: Before inserting an SD Card to record ATL data, make sure there is no "*.par" files stored on the SD Card as the presence of this type of file would initiate automatically some other functions in the receiver.

Memory Management

The flowchart below summarizes the different tasks you can perform at this point in the management of the receiver memory.

Modem Power Control Screen

This screen gives control over the GSM modem, which you can power on or off at your convenience. This may be useful to allow, or not allow, the receiver to process incoming SMS's.

When you change the state, a message is displayed asking you to wait before the GSM modem is in the required state:

NOTE: Turning on the modem from this screen is possible only after you have entered the modem settings. (APN, etc.).

Wifi Power Control Screen

This screen gives control over the Wifi device, which you can power on or off at your convenience.

When you change the state, a message is displayed asking you to wait before the Wifi device is in the required state.

Interface Language Screen

This screen allows you to select the interface language:

Press the **Log** button until the desired language is displayed, and then press the **Scroll** button to validate the new language. Available languages are: English (default), German, French, Spanish and Portuguese.

Power Off Screen

When you hold down the **Power** button for a couple of seconds, the Spectra Geospatial logo will appear on the screen.

After a few seconds, the message "Powering off..." will follow, indicating that the receiver is being turned off.

If the anti-theft protection is still enabled when you attempt to turn off the receiver, a message will ask you to confirm this action.

If you confirm (by pressing **Log**), the receiver executes the power off sequence as described above

Raw Data Recording Screen

Refer to Recording/Downloading GNSS Raw Data on page 47.

Monitoring Batteries

Take a look at the LED indicators on the SP85 front panel to read the discharging status of your batteries (Battery A LED is on the left, Battery B LED on the right).

Conventions Used

The following color conventions are used to describe the status of each of the two batteries:

Color	Graphics	Meaning
Green	0	The battery is being used to power the receiver, or is fully charged and not used.
Red		The AC/DC power block has been connected to the receiver. The battery is being charged, or is fully charged and not used.
White	0	The battery is missing or not used (the LED is extinguished)

The words "high", "low" and "very low" used to depict the energy left in a battery are explained in the table below.

Word Used	Remaining Charge		
High	More than 20% of nominal charge left.		
Low	Between 20% and 1% of nominal charge left.		
Very low	About 4 minutes of operation left before the receiver shuts down.		

The graphic conventions used in this guide to depict a blinking or non-blinking LED are provided in the table below. This table also indicates the possible meanings of each blinking mode.

Blinking Rate	Graphics	Meaning
Solid (not blinking)		Battery missing, not used or with suffi- cient charge level
Slow (1 flash per second)	-	Normally charging or battery running low (discharging)
Fast (4 flashes per second)		Temperature alarm or battery too low

Refer to the three sections below to read all the details about the status of your batteries.

Possible Battery Statuses in the Field

L	ED			
indications		Meaning		
Only Ba	attery A i	nserted		
	0	Battery A high		
-		Battery A running low		
		Battery A running very low (1)		
Only Ba	attery B i	nserted		
		Battery B high		
		Battery B running low		
		Battery B running very low (1)		
Batterie	es A and	B inserted		
		Arrow on general status screen indicates which battery is being used.		
-		Battery A being used is now low. Battery B is high and potentially usable. Next status below should logically follow when battery drops below 1%.		
		Battery A being used is now very low and the corresponding LED will go off very shortly after reaching this state. Battery B is high and potentially usable. Power will switch automatically to Battery B after Battery A has reached the battery-very-low threshold. (2)		
		Battery B being used is now low. Battery A is high and potentially usable. Next status below should logically follow when the battery drops below 1%.		
		Battery B being used is now very low. Battery A is high and potentially usable. Power will switch automatically to Battery A after Battery B has reached the battery-very-low threshold. (2)		

- (1): This status may also be indicative of a temperature problem. See *Possible Error Statuses on page 31*.
- (2): The receiver will continue to operate smoothly while power switches from one battery to the other.

Possible Battery Statuses With AC/ DC Power Block Used

LED indications	Meaning		
AC/DC Power B	lock Connected to Receiver, No Battery Inserted		
This LED color combination is obtained only after thas been powered on.			
AC/DC Power B	lock Connected to Receiver, Battery A Inserted		
	Battery A fully charged and not used.		
	Battery A being charged from the AC/DC power block (3).		
AC/DC Power B	lock Connected to Receiver, Battery B Inserted		
	Battery B fully charged and not used.		
O 🍎	Battery B being charged from the AC/DC power block (3).		
AC/DC Power B	lock Connected to Receiver, Batteries A and B Inserted		
	The two batteries are fully charged and not used. This status is provided whether the receiver is on or off.		
	Battery A is usable. Battery B is being charged from the AC/DC power block (3).		
Battery A is being charged from the AC/DC power block (3 Battery B is usable.			

(3): Charging will take place only if the receiver is off.

Possible Error Statuses

LED indications	Meaning				
Only Battery A in	Only Battery A inserted				
	Battery temperature outside of permitted range (1).				
Only Battery B is	nserted				
	Battery temperature outside of permitted range (1).				
Batteries A and	B inserted				
	Battery temperature outside of permitted temperature range. Use of any of the two batteries is prohibited (no discharging allowed). (1)				
AC/DC Adapter	Connected to the Receiver, Battery A Inserted				
	Battery temperature outside of permitted temperature range. Battery A charging suspended.				
AC/DC Power BI	AC/DC Power Block Connected to Receiver, Battery B Inserted				
	Battery temperature outside of permitted temperature range. Battery B charging suspended.				
AC/DC Power BI	AC/DC Power Block Connected to Receiver, Batteries A and B Inserted				
	Battery temperature outside of permitted temperature range. Battery charging suspended, whichever was being charged.				

(1) The receiver will shut down very shortly and will not restart until the battery temperature comes back within the permitted temperature range. Fast blinking will also occur if the same problem is detected while you are attempting to power up the receiver (will stop when you release the Power button).

Remote Battery Monitoring

When a receiver powered from its battery is left unattended to operate as an RTK base, a special function is implemented in the receiver to let the rover operator (for example) be warned when the last battery in the base is getting low.

When this occurs, and provided the underlying communication means are implemented, a text message and an email will be sent respectively to the phone number and email address that you entered while setting the receiver.

Lithium-Ion Battery Storage

All battery types discharge over time when they are not being used. Batteries also discharge faster in colder temperatures. If a battery is to be stored for long periods of time, make sure it is fully charged before storing and re-charged at least once every three months.

Below is a summary of all the recommendations for best use of your batteries:

- Fully charge all new batteries prior to use.
- Do not allow the batteries to discharge below 5 V. When used in the SP85, the built-in power controller will make sure this never happens.
- Keep all batteries on continuous charge when not in use.
 Batteries may be kept on charge indefinitely without damage to the receiver or batteries.
- Do not store batteries in the receiver or external charger unless power is applied.

Introducing SP85 as Rover

Network Rover

As a network rover, the SP85 can deliver RTK positions using one of the following standard network connection types:

- NTRIP
- Direct IP (TCP/IP Direct)

Receiving RTK corrections over the Internet can be done in three different ways:

- Using the built-in cell modem, which can be operated after having inserted the SIM card purchased for this purpose.
 NOTE: Turn the SIM Card upside down (label facing upward) before inserting it. Once the card has been inserted, close the rubber flap.
 - Then you need to select this modem when configuring your receiver for RTK operation (from the field software).
- Using the built-in WiFi device. You simply need to select this device when configuring your rover receiver for RTK operation (from the field software).
- Using the data collector's internal cell phone. RTK corrections are forwarded to the receiver over Bluetooth.

The expression "local base" refers to a base you own and can fully control (operating sessions, location, etc.).

The rover can receive RTK corrections from the local base via:

- Radio (internal at the rover, internal or external at the base). See Using the UHF Kit Option on page 80.
- Central (Spectra Geospatial cloud application). Available only if Survey Pro is used as field software.
 NOTE: Using Central relies on the use of a network connection of the NTRIP type, entirely managed by Survey Pro. The local base receiver should integrate a GPRS modem so it can support this connection on its own. Typically, the receiver used may be an SP85 as well.
- CSD mode. The SIM card used in that case is set to allow the rover to call the base directly through a phone number. Double-check with your ISP provider that CSD (or GSM data) is available and activated in your subscription. The rover will acquire RTK corrections in "Direct-Dial" mode. The rover will start a phone-like connection with the base (e.g. another SP85) by dialing the preset phone number.

Other Use Cases

Trimble RTX

Trimble RTX (Real Time eXtended) is a high-accuracy GNSS correction service delivering repeatable centimeter level positions worldwide. Combining real-time data with innovative positioning and compression algorithms, Trimble RTX utilizes an established global reference station network along with satellite orbit and clock information to compute high accuracy positions. The real-time technology is available via satellite or IP delivery across most of the world and supports GPS, GLONASS, OZSS, and BeiDou constellations.

Horizontal accuracy is 4 cm with less than 30 minutes of convergence time (horizontal accuracies of 30 cm and 20 cm are typically achieved after 10 minutes and 15 minutes respectively).

The SP85 is L-band ready, which means it can receive corrections from a *Trimble RTX corrections service*, via an L-band geostationary satellite, provided you have subscribed to this service. With a currently valid subscription, the SP85 will be able to compute and deliver positions with the announced accuracy for the chosen service, provided it is in line with the RTK option installed.

NOTE: When using corrections from Trimble RTX services, be aware that by default, position is computed directly in the local datum if you are using Survey Pro. The computed coordinates are therefore very close to the coordinates you would get in RTK.

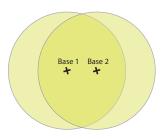
The SP85 computes high-accuracy CenterPoint RTX positions (referred to as "RTX" in the field software) when receiving CenterPoint RTX corrections through L-band satellite delivery or through a network connection. In the latter case, a preconfigured network connection is used connecting the SP85 directly to the Trimble RTX corrections service. Firmware option [C] is required in the SP85: This is a subscription for CenterPoint RTX that needs to be purchased from Trimble Positioning Services and then activated on the SP85.

When Trimble RTX operation is effective, "RTX" is reported on the receiver's General Status screen.

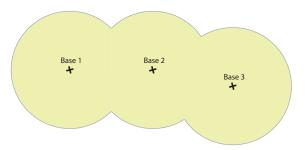
Backup RTK

Backup RTK should be used when a second correction source is available. Backup RTK will allow a rover to switch from a primary correction source (e.g. radio) automatically to a second correction source (e.g. GPRS) if the primary correction source is unavailable (e.g. obstructions).

Backup RTK operation does not report any special status on the General Status screen. As long as the receiver can compute a fixed position, the "FIXED" status is reported.


UHF Networking

This feature allows a rover to receive corrections from up to three different bases broadcasting separately their corrections via radio, on the same frequency channel, but at different times because otherwise the rover wouldn't be able to receive these corrections properly.


UHF networking can be implemented in SP85 only, and provided you use Survey Pro as the field software.

UHF networking may be used in two different modes:

 Manual: The rover operator chooses which of the bases to work with. The bases will all be within range so the operator can at all times change the base used (see diagram below).
 Typically, the manual mode is used when redundancy is required in terms of corrections availability within a working area. On the diagram below, the darker area represents the area where the rover can operate from any of the two bases.

 Automatic: The rover will automatically switch to the base within range that provides the best quality of corrections.
 Typically the automatic mode is used when you need to extend the UHF radio coverage.

Implementing UHF networking on rover side consists of:

- 1. Activating this mode.
- Choosing between automatic or manual selection of the base used (In Survey Pro, this setting is accessible from the GNSS Status function after you have started a survey).
 Selecting the manual mode means specifying the ID of the base you would like to work with.

RTK Bridge

If you are operating several rovers on a site and you wish to use network corrections, RTK Bridge can help you save money on your mobile communication costs:

- You will choose one of the SP85 in the field to be the relaying rover: it will receive network corrections via its built-in modem or WiFi and will forward them to the other rovers through its internal radio.
- All other rovers will receive corrections via radio from the relaying rover, and not from the Internet.

Hardware-wise, the relaying rover will be fitted with a SIM card and an internal radio used as transmitter. All other rovers won't need a SIM card but will each be fitted with a radio receiver.

and will be displayed successively on the General Status screen of the relaying rover when RTK Bridge is operational, indicating that the rover receives corrections and then forwards them over its radio.

Introducing SP85 as Base

Network Base

As a network base, the SP85 can deliver RTK corrections over the Internet using one of the following standard network connection types:

- NTRIP (including Central Cloud Corrections)
- Direct IP (TCP/IP Direct)

Delivering RTK corrections over the Internet can be done in one of two ways:

 Using the built-in cell modem, which can be used after having inserted the SIM card purchased for this purpose.
 NOTE: Turn the SIM Card upside down (label facing upward) before inserting it. Once the card has been inserted, close the rubber flap.

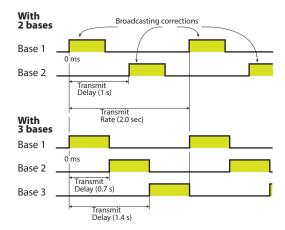
Then you need to select this modem when configuring your base receiver for RTK operation (done from the field software).

 Using the built-in WiFi device. You simply need to select this device when configuring your base receiver for RTK operation (this is done from the field software).

Local Base

The SP85 can be used as a local base, delivering its corrections through one of the following devices:

- UHF radio (optional accessory): The local base may be fitted with an internal radio module (internal UHF radio, 2 W TRx), or an external radio delivering more RF power.
 For more information on the internal radio module, see Using the UHF Kit Option on page 80.
- Modem in CSD mode: The SIM card used in that case is set to allow the base to be called by a rover through a phone number. Double-check with your ISP provider that CSD (or GSM data) is available and activated in your subscription.
- "UHF+CSD" base mode: When the SP85 is used with the internal radio option to transmit corrections, you may implement a second transmission channel in parallel to deliver the same corrections, but this time through the internal modem used in CSD mode.


In practice, if a rover does no longer receive corrections through the radio transmission channel (because it's too

far away from the base for instance), it can quickly be set to work with the other transmission channel. In the rover, choose the CSD modem instead of the radio as communication device, and then let the receiver dial the base phone number. The rover will then get the corrections still from the same base, but this time through its modem. NOTE: A SIM card enabling phone-like connections is required on both the base and rover.

UHF Networking

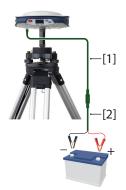
See theory of operation in *UHF Networking on page 35*. Implementing UHF networking on base side consists of introducing a delay specific to each of the bases used in the broadcasting of their corrections. **UHF networking won't work if all the bases broadcast their corrections at the same time**.

Since all the bases are steered by the same clock (GNSS time) and a different delay is introduced for each base, then each of them will broadcast its corrections over a specific time, and the rover will be able to sort out and recognize each set of corrections that it receives from the different bases.

To be on the safe side, the highest transmit rate possible you should use is 2 seconds because a base needs a maximum of 700 ms to broadcast its corrections, assuming the following:

- Corrections are broadcast for all available satellite constellations (no disabled constellations).
- The ATOM super-compact format is used to broadcast corrections

NOTE: This implementation scheme may be extended to more than three bases if for example you need to extend the UHF coverage along a corridor (case where the rover is typically operated in automatic mode).


In this case, you will re-use the "0 ms", "700 ms" and "1400 ms" delays on the additional bases, making sure the bases using the same delays are definitely out of range from each other.

Internal vs. External Power Source

Consider the following before setting up a local base:

- If the base is left unattended for the whole day, you may want to power it from an external power source that will provide enough power for your work day.
 In this case, you may use the Field Power kit (see Optional Accessories on page 3) to connect the receiver to an external 12-Volt battery. See diagram in which [1] is cable P/N 95715 and [2] is cable P/N 83223-02.
 - NOTE: If you need to change the fuse on cable P/N 83223-02, please use the same type of fuse as the one originally provided (15 A @32 V). This is mandatory.
 - If you intend to work close enough to the base, or someone is in charge of keeping the base running throughout the day, you may decide to power the base from its internal battery.

For a day's work, you may need two batteries: A fresh one inserted in the receiver at the beginning of the day, and the second one may be needed sometime before the end of the day.

Configuring SP85 With Survey Pro

NOTICE: It is assumed you have a good knowledge of Survey Pro. This section will only focus on the key settings for implementing each of the available SP85 operating modes as rover or base. Remember other settings may be required as you go along.

For more general information on Survey Pro, please refer to the corresponding documentation.

- Power on the SP85. Wait until the boot sequence is over.
- On the data collector, launch Survey Pro and open a job.
- Select **Switch to GNSS** to choose the GNSS survey mode.
- Using the Spectra Auto-Configure function, connect Survey Pro to your SP85 via Bluetooth. CAUTION- You can do this within the 5 minutes that follow SP85 power up. After this time, you have first to open the Bluetooth Pairing screen to make this possible (see details on page 23).
- Create the suitable receiver profile for your SP85:

SP85 Used As:	Required Type of Receiver Profile:	
Network Rover	"Net" (e.g. "SP85 0035 Net")	
RTX Rover	"RTX" (e.g. "SP85 0035 RTX")	
Network Base	"Net Base" (e.g. "SP85 0035 Net Base")	
Rover	"Rover" (e.g. "SP85 0035 Rover")	
Base	"Base" (e.g. "SP85 0035 Base")	

NOTE: The SP85 can also operate with TERIAsat, a local L-band PPP service available in Metropolitan France. For more information, please contact your Spectra Geospatial distributor.

SP85 Base/Rover System Uses:	Receiver Function	Required Type of Receiver Profile :
1) Radio link or 2) CSD	Base Rover	"Base" (e.g. "SP85 0035 Base") "Rover" (e.g. "SP85 0035 Rover")
Central*	Base Rover	"Net Base" (e.g. "SP85 0035 Net Base") "Net" (e.g. ""SP85 0035 Net")

^{*:} On rover side, the data collector should first be connected to the same Central account as the local base delivering corrections; Then select the network named "Central Cloud Corrections" to acquire these corrections.

- Go back to **Manage Instruments** and select the receiver profile you have just created.
- Tap on 🔯. Make the following additional settings:

SP85 Used As:	Parameters:
Network Rover	Modem tab: Select "Internal GPRS modem", "Internal Wi-Fi" or "Current Internet", depending on which device you wish to use to let the receiver acquire corrections. When starting a survey, define the network to connect to (tap Manage Networks, Add Network, create then select this network).
RTX Rover	Modem tab: Select "Internal GPRS modem". When starting a survey, you don't need to define the network to connect to. This selection is fully managed by Survey Pro. See also <i>Trimble RTX on page 42</i> below.
Network Base	Survey tab: Choose format of corrections Modem tab: Select "Internal GPRS modem" When starting a survey, define the network to connect to (tap Manage Networks, Add Network, create then select this network).

SP85 Base/Rover System Uses:	Receiver Function	Parameters:
CSD link	Base	Survey tab: Choose format of corrections. Modem tab: Set Data Modem= "Internal GSM" Enter SIM card PIN.
	Rover	Modem tab: Set Data Modem= "Internal GSM" Enter base phone number and SIM card PIN.
Radio link	Base	Survey tab: Choose format of corrections. Modem tab: Choose the model of radio the SP85 is using. Set the radio.
	Rover	Modem tab: Choose the model of radio the SP85 is using. Set the radio.
Central	Base	Survey tab: Choose format of corrections. Modem tab: Select "Internal GPRS modem" or "Internal Wi-Fi", depending on which device you wish to use to let the receiver deliver its corrections. Select the network named "Central Cloud Corrections when starting a survey.
Control of	Rover	Modem tab: Select "Internal GPRS modem", "Internal Wi-Fi" or "Current Internet", depending on which device you wish to use to let the receiver acquire corrections. Select the network named "Central Cloud Corrections" when starting a survey.

Trimble RTX

You've already added and selected a "network rover" receiver profile for your SP85.

- Go to Manage Instruments and select this receiver profile.
- Tap on the button corresponding to this receiver profile.
- Open the Survey tab.
- Select "RTX" from the Setup Type drop-down list.
- Tap and then start a survey. The network profile required to receive CenterPoint RTX corrections having been predefined in Survey Pro, it is selected automatically for use, which means you are not requested to make a network selection when starting the survey.

Backup RTK

Backup RTK may only be made active in a rover configured to primarily receive corrections via radio. In this configuration, you may add a second source of corrections, necessarily a network-based one.

You've already added and selected a "rover" receiver profile for your SP85.

- Go to Manage Instruments and select this receiver profile
- Tap on the button corresponding to this receiver profile
- · Open the Multi-Base tab.
- Select "Backup RTK" from the Mode drop-down list.
- In the Modem drop-down list just below, select the device through which network corrections (the "backup" corrections) will enter the receiver. This may be "Current Internet" (i.e. the data collector's internal modem), "Internal GPRS modem" (i.e. the SP85's internal modem) or "Internal Wi-Fi" (i.e. the SP85's Internal Wi-Fi). Then make the additional settings relevant to your choice of device.
- Tap 🤣.
- Tap Start Survey in the menu. Survey Pro shows the currently selected receiver profile and the current radio settings (radio type, frequency, channel).
- Tap Connect.
 - If you selected "RTX", there is nothing else to be done to start the survey.

 If you selected "Network Rover", Survey Pro asks you to specify the network profile used as the backup source of corrections. Choose one or define one and select it, then tap Connect. This starts the survey.

UHF Networking -Bases

In each of the bases used, assuming you have already made the usual settings for operating a base with a UHF radio transmitter (i.e. "base" receiver profile created and selected), you just need to make these additional settings:

- Go to Manage Instruments
- Tap on the button next to the selected receiver profile.
- · Open the Survey tab.
- Define the following parameters: Corrections ("ATOM Super Compact" highly recommended), Station ID, Transmit Rate (typically 2 seconds) and Transmit Delay (0 ms for first base, etc. See UHF Networking on page 38).
- Tap 🐼.

IMPORTANT: All bases should run with GNSS firmware v3 or higher.

UHF Networking -Rover

See theory of operation in *UHF Networking on page 35*). Assuming you have already made the usual settings for operating a rover with a UHF radio receiver (i.e. "rover" receiver profile created and selected), you just need to make these additional settings:

- Go to Manage Instruments
- Tap on the button next to the selected receiver profile.
- Open the Multi-Base tab.
- Select "UHF Networking" from the Mode drop-down list.
- Tap 🐼 .
- Go back to Survey Pro Home screen and start a survey.
- Tap on GNSS Status and then open the Multi-Base tab.
- Use the Station ID drop-down list, below the map view, to select either "Automatic" or the ID of a particular base you would like to work with. Only the Base IDs of bases within radio range will appear in this list.

IMPORTANT: The rover should also run with GNSS firmware v3 or higher.

RTK Bridge

Assuming you have already made the usual settings for operating a network rover (i.e. "network rover" receiver profile created and selected, required network profile created and selected), you just need to make this additional setting on the relaying rover:

- Go to Manage Instruments
- Tap on the button next to the selected receiver profile.
- · Open the General tab.
- Set the RTK Bridge field to "On".
- Tap ...
- Start a survey. You then need to define the network profile providing corrections.

The other rovers do not need additional settings, apart from being set with a "rover" receiver profile and operate with their radio.

Base Offering Two Independent Transmission Channels for Delivering Corrections

You've already added and selected a "base" receiver profile for your SP85.

- Go to Manage Instruments and select this receiver profile.
- Tap on the button corresponding to this receiver profile.
- Open the General tab.
- Select "Internal GSM" from the Backup Base Modem dropdown list.
- Tap 🤡.
- Tap Start Survey from the Survey menu. Survey Pro shows the currently selected receiver profile and the current radio settings (radio type, frequency, channel).
- Tap Connect to start operating the SP85 as a base.

On rover side, do the following if the rover does no longer receiver corrections via its radio:

End the survey in progress.

- Go to Manage Instruments and select the receiver profile currently used.
- Tap on the button corresponding to this receiver profile.
- Open the Modem tab.
- In the Data Modem scroll-down list, select "Internal GSM" and then enter the required parameters (base phone number, PIN).
- Start a new survey. When tapping on Connect, the modem will automatically call the base for corrections.

Configuring the SP85 WiFi Device

The SP85 WiFi device can be used either as a client or a WiFi Access Point (or Hotspot). The main purpose of operating the WiFi device as an access point is to allow you to run the SP85 Web Server interface directly from your data collector without the need for an external network connection.

To set the Wi-Fi device, do the following:

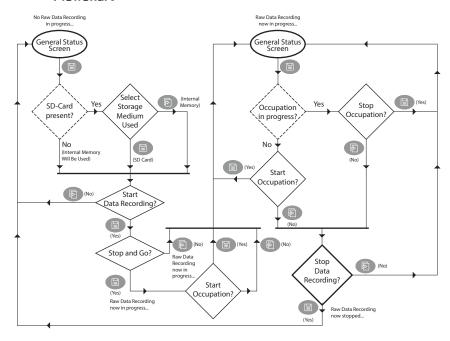
- Go to Manage Instruments and select your receiver profile.
- Tap on the button corresponding to this receiver profile.
- Open the Alerts tab.
- Tap on the Internet Connections button.
- Open the **Internal Wi-Fi** tab. From there, enable WiFi, which is then set in client mode. After a while, the screen will list the WiFi networks within range.
- To switch the device to Wi-Fi Access Point mode, tap on the **Hotspot** button.

 Check on the Enable Wi-Fi Hotspot button. You may change the Default SSID and key parameters if you wish:

Default SSID is: <receiver model>_<last 6 figures from S/N> Default key is:

<receiver serial number>

- Tap Survey Pro goes back to the previous screen listing all the parameters you have just defined + a fixed IP address for the WiFi access point which is 192.168.130.1.
- Tap ②.


To run the SP85 Web Server interface from the data collector, open a web browser and type this IP address:

192.168.130.1

NOTE: When you turn it on from the SP85 display screen, the WiFi device is set as an access point. But when scanning for Wi-Fi devices from a data collector running Survey Pro, the WiFi device will automatically be switched to client mode.

Recording/Downloading GNSS Raw Data

Data Recording Flowchart

NOTE: Dotted diamond shapes hold questions solved by the firmware, solid ones those answered by the user.

Step-by-Step Procedure

The SP85 can at your request record GNSS raw data on the selected storage medium. Raw data recording may take place in the background while making a real-time RTK survey. The name of the file being recorded may be read on the Memory/SD card screen (see Memory/SD Card on page 19).

The SP85 is designed to let you easily control both the beginning and end of data recording.

In Stop & Go, the SP85 will allow you to define beginnings and ends of static occupations (periods of time during which the receiver is kept stationary).

This will translate into adequate tags inserted into the raw data file at their exact times of occurrence. When post-processing the file, the office software will be able to process these tags as well.

Reminder:

To start raw data recording:

Scroll button:

Log button:

Have the General Status screen displayed on the front panel display.

Press the **Log** button.

If an SD card is present, you will be asked to specify the storage medium on which to record data:

- Press the Log button to select the SD Card
- Or press the **Scroll** button to select the internal memory.

With no SD Card present, the above screen will be skipped as data recording will necessarily take place in the internal memory.

You will then be asked to confirm the beginning of data recording:

(Other possible message if the SD card has been selected: Start recording on SD-Card?)

Press the Log button. The receiver prompts you to record data in Stop & Go mode, through which you can time tag static occupations.

If you press the Scroll button, data recording starts right away and the receiver goes back to the General Status screen. Make this choice if you are not interested in tagging static occupations during the data recording session.

If you press the **Log** button, data recording starts right away and a new message appears prompting you to start an occupation:

Choose what's best appropriate at this time of your survey:

- If you are not occupying a point (kinematic sequence) or you don't wish to keep track of the current static sequence, press the **Scroll** button. This takes you back to the General Status screen.
- If you are occupying a point (the receiver is static) and you wish to keep track of that occupation, press the Log button to mark the beginning of the occupation. This takes you back to the General Status screen as well.

To stop an occupation:

 From the General Status screen, press the Log button. The following screen is then displayed.

 Press the Log button. This takes you back to the General Status screen. Note that raw data recording is still in progress.

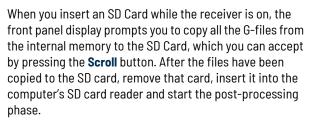
To start a new occupation (raw data recording still in progress):

 From the General Status screen, press the Log button twice.

To stop data recording:

- From the General Status screen, press the **Log** button.
- Whether an occupation is in progress or not, just press the Scroll button.

The following screen is then displayed:

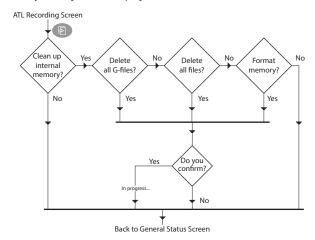


 Press the Log button. Data recording stops right away and the receiver comes back to the General Status screen. If an occupation is in progress, the end of data recording will also be the end of the occupation.

Downloading Raw Data Files

GNSS raw data files (G-files) recorded by the receiver (see Step-by-Step Procedure on page 47) can be made available to the post-processing software in one of four ways:

- Either you record them directly to the SD card you've inserted into the receiver. Back in the office, just remove the SD card from the receiver, insert it into the computer's SD card reader and start the post-processing phase.
- Or you first record them to the receiver's internal memory.
 Back in the office, turn on the receiver and wait until it has booted. Then insert an SD card into the receiver.



- Or using your field software (Survey Pro). These applications can also be used to delete G-files directly from the receiver.
- Or using Spectra File Manager software (see Spectra File Manager Software Utility on page 95). This utility also allows you to delete files from the receiver.

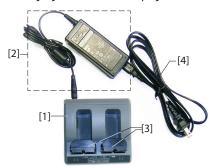
Once your G-files have been duplicated by your post-processing software, they may be deleted from the SD card. If they were initially recorded in the receiver's internal memory, use the SP85 embedded function accessible via the front panel display, or use Spectra File Manager software (as mentioned above), to delete either all G-files, or all types of files, from the internal memory.

The SP85 embedded function can also be used to reformat the entire memory. See function flowchart below. See also *Memory Management on page 25*.

Charging Batteries - Using External Power

Batteries Vs. External Power Source

The SP85 can be powered by its internal, removable batteries, or by an external power source connected to its Power/Data connector (serial port A; DC input).


Typically, one 2.6 Ah battery provides approximately 5.0 hours of operation during an RTK survey. If you insert two fresh batteries in the receiver, you will get up to 10 hours of total operation (the two batteries are used one after the other with smooth automatic switching from the low to the fresh one without causing operation disruption).

If an external power source is connected to the power/data connector via the AC/DC power block, it is used in preference to the internal batteries. When there is no external power source connected, or if the connected one is not working, then the internal batteries will be used.

When a UHF Kit option is used in a base receiver operated for a whole day's work without interruption, Spectra Geospatial recommends that the receiver be powered from an external 12-V battery with higher capacity. The operating time will depend on the battery capacity and charge as well as the output power level set for the radio transmitter. See Completing Base Radio Setup With External UHF Antenna on page 84.

Charging Batteries, Scenario #1

- Remove the batteries from the receiver.
- Use the separate battery charger ([1]) and AC/DC power block ([2]) provided. The battery charger can accommodate two batteries ([3]) and charges them simultaneously.
- Connect the AC/DC power block to a power outlet using the appropriate power cord ([4)]. For charging instructions refer to Charging the Batteries on page 12.

Charging Batteries, Scenario #2

- Keep the batteries in the receiver.
- Use the AC/DC power block ([1]) that you connect to the receiver's serial port through a jack/SAE adapter ([2]) and one of the possible two SAE/Lemo cables ([3]).

More details are provided on the next page explaining which cables can be used as cable [3].

• Connect the AC/DC block to the power line using the appropriate power cord ([4).

As in scenario #1, only one battery is charged at a time with this scenario, **provided the receiver is kept turned off and the internal temperature is within tolerances**. Charging will start automatically for the second battery when it is complete for the first one.

NOTICE - If your receiver is used with the UHF kit option, the temperature inside the receiver may be greater than 40° C at the end of your day. This may be due to the additional power consumed in the radio module or/and to high ambient temperature.

If this happens and you attempt to charge the batteries right at the end of your day using the AC/DC power block (that means, with one, or the two batteries left inside the receiver), the two battery LED indicators will start blinking red at a fast rate, meaning battery charging is not allowed to start at that time (see *Possible Error Statuses on page 31*).

You should not however worry too much and just keep the AC/DC power block connected to the receiver. As soon as the receiver temperature drops below 40°C, battery charging will start. One of the battery LED indicators will then start blinking red at a slow rate, meaning the corresponding battery is being charged. Then the second battery will be charged in turn. You can be sure your two batteries will fully charge overnight.

Using Cable P/N 59044-10-SPN from the Office Power Kit

*: These items are part of the SP85 Office Power Kit P/N 94336 (option).

Using Cable P/N 95715 from the Field Power Kit

This cable is primarily designed to power an RTK base from an external battery (see *Completing Base Radio Setup With External UHF Antenna on page 84*). But it can also be used in the office to connect to the AC/DC power block.

^{*:} This item is part of the SP85 Office Power Kit P/N 94336 (option).

^{**:} This item is part of the SP85 Field Power Kit P/N 94335 (option)

Anti-Theft and Startup Protections

Anti-Theft Protection

Purpose

The SP85 integrates an anti-theft function to protect your equipment while it is left operating unattended.

This protection is intended for a SP85 operated as a base.

The anti-theft protection will discourage the theft of an SP85 receiver by rendering it useless without the anti-theft password. It will also aid in recovery of a stolen receiver by sending messages to its real owner with the receiver's current location.

Enabling/Disabling the Anti-Theft Protection

The anti-theft protection is enabled and disabled from the data collector controlling the receiver. If you use the Spectra Survey Pro software on your data collector, a user-friendly interface will let you quickly enable or disable the anti-theft protection (see Using Anti-Theft and Startup Protections in Survey Pro on page 60).

If you are using other field software, please contact Technical Support for more information.

How the Receiver Operates With the Anti-Theft On

With the anti-theft protection enabled, and as long as no theft is detected, the receiver will operate normally.

What the Anti-Theft Protection Does Initially

At the time the anti-theft protection is enabled, the last valid position computed by the receiver is saved in memory. This position is saved as the anti-theft position.

NOTE: You won't be allowed to enable the anti-theft protection until the receiver can compute a position solution in standalone mode for its location, and the communication means (modem, WiFi) are operational to forward an alert in case of theft.

What Events Will Trigger a Theft Alarm?

From the moment the anti-theft protection is enabled (and an anti-theft position has been saved in the receiver), a theft condition will be detected, and an alert will be issued:

 If the receiver has unexpectedly been unable to deliver a valid position for the last 20 seconds or so. • Whenever the protected receiver computes a valid position that is distant by more than 100 meters (around 330 feet) from the *anti-theft position*.

What Will Happen When a Theft is Detected?

The protected receiver will switch to "theft mode", that is:

- The buzzer will regularly emit a sound alarm in quick succession, and for an indefinite period of time.
- The front panel display will read: "ANTI-THEFT ALARM".
- All output messages will be stopped (the protected base receiver will no longer generate and transmit corrections, or any other NMEA or raw data messages).
- If the internal GSM modem is used, a text message (SMS) and/or an email will be sent every 1 minute to, respectively, the phone number(s) and/or email recipient(s) you indicated when programming the anti-theft protection.
 Both the text message and email will contain the base's last computed position to help you track the thief.
- The three front panel buttons of the protected receiver will be made inactive, which means no one can:
 - Power off the receiver
 - Reset the receiver
 - Upgrade the receiver.

What if the Thief Removes the Batteries?

If the thief removes the batteries before vanishing into thin air with your receiver, be sure the theft will be detected sooner or later. Next time the receiver is powered back on, because the protection is still active, the theft alarm will be set as soon as a valid position is computed and found distant by more than 100 meters from the memorized *anti-theft position*, or no valid position is delivered for 20 seconds or so.

There won't be any possibility for the thief to quit that mode and so the receiver will stay completely unusable (even if the SIM card is removed with intent to use a radio link instead for example). A theft alert will be issued however only if the communication channel (cellular modem, WiFi) has been left operational.

Disabling Anti-Theft Before Turning Off the Receiver

If your base is set up every day at the same location and you wish to keep the protection active day after day, the anti-theft

ANTI-THEFT ALARM protection may be left enabled between work sessions. This will not trigger any false Anti-Theft alarm.

On the contrary, if the base is moved to a different location every day, we recommend you disable the anti-theft protection before you turn off the receiver. If you don't, when starting the next operating session on a new location, an Anti-Theft alarm will be raised mistakenly, requiring that you enter the Anti-Theft password on the data collector to remove the protection and stop the alarm, which may be annoying and a waste of time.

As a safety measure, a power-off confirmation message will show up if you attempt to turn off the receiver with the anti-theft protection still active (see screen in the left-hand column). Confirm power off by pressing the **Log** button (otherwise, press **Scroll** to reject the request so you can disable the Anti-Theft protection, using your field software, before turning off the receiver).

Lost your Anti-Theft Password?

If you lose that password, you will be unable to remove the Anti-Theft protection. You will need to call Technical Support, which will provide a specific password so you can disable the protection.

The Theft Alarm is Part of the Level-1 Alarms List

The theft alarm is managed as a level-1 alert (see *Alerts on page 102*). As such, it is submitted to the same rules as the other level-1 alerts when it comes to issuing a notification email or SMS.

However, in Survey Pro, you are given the ability to configure the receiver to issue notification emails or SMS only for the theft alert.

Startup Protection

Purpose

The SP85 integrates a protection from illegal use. With this protection active, only authorized operators will be allowed to use the receiver after they have entered their password.

Enabling/Disabling Startup Protection

This protection may be enabled or disabled from the data collector controlling the receiver. If you use the Spectra Survey Pro software on your data collector, a user-friendly interface will let you quickly enable or disable the startup protection (see Using Anti-Theft and Startup Protections in Survey Pro on page 60).

If you are using other field software, please contact Technical Support for more information.

How SP85 Operates with Startup Protection Active

The receiver operates with minimum functionality as long as the password has not been typed in from the data collector keyboard. It will operate normally as soon as the requested password has been entered.

Remember the password needs to be entered after each power-up sequence (and not only once), and as long as the protection is kept active.

When you enter the password to unlock the receiver, you can however decide at the same time that the startup protection should be deactivated (in that case, the password will not be required next time you power up the receiver).

Difference Between Startup and Anti-Theft Protections

The difference is that startup protection only prevents the receiver from being used illegally, whereas anti-theft protection is used to detect a possible theft after the receiver has been left operating unattended as a base.

Shared Resources

Anti-Theft and startup protections share the same password. If you change the password for anti-theft, then you have also changed the password for startup protection (and vice versa).

Can Anti-Theft and Startup Protections Be Both Active?

Yes. There is no contradiction between the two protections, which complement each other. If the startup protection is active and a theft alarm occurs, then you will have to enter the password twice (assuming you've recovered the stolen receiver): The first one will deactivate the anti-theft alarm, and the second one will make you a legal user of the receiver.

Using Anti-Theft and Startup Protections in Survey Pro

- Power on the SP85. Wait until the boot sequence is over.
- On the data collector, launch Survey Pro and open a job.
- Select Switch to GNSS to select the GNSS survey mode.
- Connect Survey Pro to your SP85 via Bluetooth.
- Create the suitable receiver profile for your SP85.
- Go back to Manage Instruments and select the receiver profile you have just created.
- Tap on 👺.
- First select the Alerts tab, then the Anti-Theft tab. These
 two tabs contain all the information you need to set the
 anti-theft and startup protections. These are detailed
 below.

Alerts Tab

 [1] List of contacts (email addresses, phone numbers) notified of alerts, including theft, when these occur. See Managing Contacts and Notifications on page 62 - [2] Alerts: Select which alerts will be notified to the registered contacts.

Alert Field Setting	Notifications
Off	None
Standard	Only for level-1 alerts
Full	For level-1 and level-2 alerts

- [3] Email Settings: This button allows you to configure your email account (i.e. that of the embedded email sender).
 You need to provide Survey Pro with the SMTP server name, the SMTP port number (default: 25), the user name and password for outgoing mail, and the sender's email address (noreply@SP85.com by default).
- **[4]**: Exclamation mark shown in this column for all contacts defined to receive alert messages.
- **[5]**: Padlock shown in this column for all contacts defined to receive anti-theft messages.

Anti-Theft tab

- [6] Change Password: Tap on this button to enter and confirm the password that will allow the field operator to disable the anti-theft protection and startup protection (see Startup Protection on page 59).
 - NOTE: You cannot change the password while the antitheft protection is active.
- [7] Enable (anti-theft): This button allows you to enable the anti-theft function directly from this screen (as you would from Survey > Anti-Theft).

Before you enable anti-theft, please read the currently active password shown in plain on the screen. This is to make sure you will keep it in mind (you'll need it to disable the anti-theft protection). After anti-theft has been enabled, the **Enable** button turns into a **Disable** button.

 [8] Prompt to enable Anti-Theft: When this box is enabled, users will be prompted to turn anti-theft on when they set a base or start a standalone, static, post-processing session.

Keeping this box disabled means users will not be prompted.

Users may enable or disable anti-theft protection at any time through **Survey > Anti-Theft**.

- [9] Test: Tapping on this button will cause the receiver front panel to display "ANTI-THEFT ALARM" for about 10 seconds. Notifications will be sent via email or/and SMS text messaging to the registered contacts, as appropriate. This test is useful to check that there is no mistake in the entered email addresses and phone numbers.
- [10] Enable (startup protection): This button allows you to enable the startup protection. For more information on this function, please refer to Startup Protection on page 59.

 Before you enable the startup protection, please read the currently active password shown in plain on the screen.

 This is to make sure you will keep it in mind (you'll need it to be allowed to use the receiver next time you turn it on).

 After the startup protection has been enabled, the Enable button turns into a Disable button.

Managing Contacts and Notifications

This area on the **Alerts** tab allows you to define which contacts should be informed, through which transmission media, and which type of notification they should receive.

Tap on Add Contact.

For each new contact you add, you need to define:

- The communication media used for this contact (email or phone)
- The contact's email address or phone number
- Send Alert Messages: Check this box if the contact is supposed to receive alert messages. Keep it cleared otherwise.

- Send Anti-theft Messages: Check this box if the contact is supposed to receive anti-theft messages. Keep it cleared otherwise.
- Tap to save the new contact.
- Create as many contacts as necessary through the same procedure.
- Tap again when you are done with the list of contacts.

Enabling/Disabling the Anti-Theft Protection

After you have set the receiver's **Alerts** and **Anti-Theft** tabs to meet your requirements, go to the **Survey** menu and then select one of the following functions:

- Anti-Theft: This function shows the current status of the
 anti-theft protection (Enabled, Disabled or Alarm Raised). It
 can be used to enable or disable the protection at any time.
 You need to enter the password previously defined on the
 Anti-Theft tab before you are allowed to disable the antitheft protection. If the theft alarm has been raised, you can
 only disable the anti-theft protection.
- Start Survey: When you use this function to set an RTK base, and provided the Prompt to enable Anti-Theft box has been enabled (see Anti-Theft tab on page 61), the anti-theft protection will be enabled automatically. (A message will warn you that the protection has been activated and information will be given to tell you how to disable it.)
 Later the protection will be disabled automatically when you use the End Survey function.
- Start Recording: When you use this function to start a static
 data recording, and provided the Prompt to enable AntiTheft box has been enabled (see Anti-Theft tab on page 61),
 the anti-theft protection will be enabled automatically. (A
 message will warn you that the protection has been
 activated and information will be given to tell you how to
 disable it.)

Later the protection will be disabled automatically when you use the **Stop Recording** function.

Communicating with SP85 Using a Mobile Phone

Introduction

The SP85 can receive and process specially formatted SMS's causing it to respond accordingly. This functionality gives you extra flexibility for remote control and monitoring of your SP85.

Typically, you will use this functionality if you are operating your own base/rover system and, being at some distance from your base, you would like to communicate with it for monitoring or remote control purposes. The use of SMS's is however not restricted to communicating with a base: You can also use them to communicate with a rover.

SP85's SMS functionality may be:

- Disabled
- Set up to process SMS's only from registered phone numbers.
- Or set up to process SMS's from any phone number.

By default, the SP85 accepts SMS's from any phone number.

Any command you send should be in the form:

```
Command_name[<sp>parameter_1][<sp>parameter_2]
[<sp>parameter_3][<sp>parameter_4]
```

(Commands may be typed in using upper- or lower-case characters.)

Any response the remote SP85 returns will be in the form:

```
SP85<sp>{Receiver Serial Number}
HH:MM:SS

Command_name[<sp>parameter_1][<sp>parameter_2]
[<sp>parameter_3][<sp>OK
[Optional_parameters_when_appropriate]
```

Where:

- <sp>: Space character
- {...}: Definition of the parameter you must type (and not the parameter itself).
- [...]: Parameter required for some commands only.

- Date expressed in day/month/year and time in hours:minutes:seconds.
- Line in bold characters: Command SMS sent to SP85
- Line in normal characters: Response SMS from SP85

Commands List

Command Name & Syntax	Function
ANH VERT x.xx	Sets antenna height (vertical measurement)
ANH SLANT y.yy	Sets antenna height (slant measurement)
ANR OFF	Sets L1 phase center as reference location
ANR PC1	Sets L1 phase center as reference location
ANR ON	Sets ground mark as antenna reference location
ANR SPT	Sets ground mark as antenna reference location
ANR ARP	Sets ARP as reference location
ATH ON	Activates anti-theft function
ATH OFF {password}	Deactivates anti-theft function
GETID	Returns SP85 identification information
GETMEM	Returns memory status
GETPOS	Returns last computed position
GETPOWER	Returns power status
HELP	Returns the list of available commands
HELP (command name)	Returns the syntax of the specified command
MEM INT	Sets internal memory as current memory
MEM SD	Sets external SD card as current memory
MODE BASE	Sets the SP85 as a base receiver
MODE ROVER	Sets the SP85 as a rover receiver
POS	Provides coordinates to be the reference position
POS CUR	Sets last computed position as reference position
RADIO ON	Powers up the radio
RADIO CHN INT {channel}	Sets channel number in internal radio device
RADIO CHN EXT {channel}	Sets channel number in external radio device
RADIO OFF	Turns off radio
REC ON	Starts data recording at currently set recording rate
REC ON 0.5	Same but you choose the recording rate
REC OFF	Stops data recording
SEND LOG n@	Asks the SP85 to email its last "n" log files to the specified email recipient
SEND PAR@	Asks the SP85 to email its operating parameters to the specified email recipient

See below for details.

ANH: Setting Antenna Height

Send this SMS to change the receiver antenna height. You can either send a vertical or slant measurement (both in meters) of the antenna height.

Command Syntax:

ANH<sp>VERT<sp>{vertical measurement}

or

ANH<sp>SLANT<sp>{slant measurement}

Example 1: Sending vertical height measurement

ANH VERT 2.124

SP85 5345900003

11:02:14

ANH VERT 2.124 m: OK

Example 2: Sending slant height measurement:

ANH SLANT 1.645

SP85 5345900003

11:02:14

ANH SLANT 1.645 m: OK

ANR: Setting Antenna Reduction Mode

Send this SMS to change the location for which the receiver computes a position.

Command Syntax:

1) Position computed for antenna L1 phase center location:

ANR<sp>OFF

OL

ANR<sp>PC1

2) Position computed for ground mark location:

ANR<sp>ON

or

ANR<sp>SPT

3) Position computed for antenna reference point (ARP):

ANR<sp>ARP

Example:

ANR ON

SP85 5345900003

11:03:40

ANR ON: OK

ATH: Setting Anti-Theft

Send this SMS to enable or disable the anti-theft function. For example, anti-theft can be disabled remotely just at the end of a work day to allow another operator not working with a data collector to be able to fetch the base without causing the anti-theft alarm to go off.

Command Syntax:

1) Enabling anti-theft (be sure to know the password before you send this SMS):

ATH<sp>ON

2) Disabling anti-theft:

ATH<sp>OFF<sp>{password}

Example:

ATH ON

SP85 5345900003 11:04:25

ATH ON: OK

GETID: Reading Receiver Identification Information

Send this SMS to query the receiver for its serial number, firmware version and warranty expiration date. (The SP85 serial number is part of almost every SMS the SP85 sends back in response to a command.)

Command Syntax:

GETID

Example:

GETID

SP85 5345900003 11:05:01

Version: 2.00

Version date: 01/03/2015 Expiration date: 26/11/2015

GETMEM: Reading Memory Status

Send this SMS to query the receiver for the status of the currently used memory.

currently used memor

Command Syntax:

GETMEM

Example:

GETMEM

SP85 5345900003 11:08:29

Current memory: internal

Free memory: 1.4GB (99%)

G-Files: 3 ATL Files: 1

Free SD Card: 7.2GB (99%)

G-Files: 2 ATL Files: 0

GETPOS: Reading Computed Position

Send this SMS to query the receiver for the last computed position.

Command Syntax:

GETPOS

Example:

GETPOS

SP85 5345900003

11:11:17

47 17'12.12345"N 001 30'14.54321"W

+75.254 m (SPT) Type: FIXED

Mode: ROVER Age: 1 s Satellites: 22

Antenna height: 2.000 m (vert)

GETPOWER: Reading Receiver Power Status

Send this SMS to query the receiver for the current status of its $\,$

power supply.

Command Syntax:

GETPOWER

Example 1:

GETPOWER

SP85 5345900003

11:13:47

Source: left-hand battery Left battery: 80% (7.3V)

Right battery: External power:

Example 2:

GETPOWER

SP85 5345900003

11:14:04

Source: external power Left battery: 80% (7.3V) Right battery: 100% (7.4V) External power: 12.2 V

HELP: Reading the List of Commands

 Send this SMS if you want to be reminded of all the possible commands you may use to control/monitor a receiver through SMS's.

Command Syntax and SP85 Response:

HELP

ANH

ANR

ATH

GFTID

GETMEM

GETPOS

GETPOWER

MEM

MODE

POS

RADIO

REC

SEND

2. The receiver can return the syntax of each of the above commands by sending the following SMS:

HELP<sp>command name

{Detail of command syntax returned}

+ Command explanation in plain

Example:

HELP MEM

MEM <INT/SD>
Sets recording memory

MEM: Setting Current Memory

Send this SMS to change the memory used by the receiver. This may be the internal memory or an external SD card connected to the receiver.

Command Syntax:

MEM<sp>INT

or

MEM<sp>SD

Example 1: Choosing the internal memory

MEM INT

SP85 5345900003

11:05:09

MEM INT: OK

Example 2: Choosing the external SD card:

MEM SD

SP85 5345900003

11:05:18

MEM SD: OK

MODE: Setting Receiver Mode

Send this SMS to change the receiver's operating mode: rover or base.

Command Syntax:

MODE<sp>BASE

or

MODE<sp>ROVER

Example 1: Selecting Base Mode

MODE BASE

SP85 5345900003

11:12:25

MODE BASE: OK

Example 2: Selecting Rover Mode

MODE ROVER

SP85 5345900003

11:12:45

MODE ROVER: OK

POS: Setting Reference Position

Send this SMS to change the receiver's reference position. You can choose to send the coordinates of this position or ask the receiver to use the last position it computed (and then keep the reference position to this value).

Command Syntax:

POS<sp>{Attribute}<sp>{Latitude}<sp>{Longitude}<sp>{Height} or

POS<sp>CUR

Attribute	Position attribute: PC1: Position attached to L1 phase center (default) ARP: Position attached to ARP (Antenna Reference Position) SPT: Position attached to ground mark (surveyed point)	PC1, ARP, SPT
Latitude	Latitude in degrees, minutes, seconds and fraction of second (5 decimal places) (ddmmss.sssss)	0 to ±90
Longitude	Longitude in degrees, minutes, seconds and fraction of second (5 decimal places) (dddmmss.sssss)	0 to ±180
Height	Height in meters	0 to ±9999.9999

Example 1: Sending the coordinates of the reference position

POS PC1 471756.29054 -13032.58254 88.225

SP85 5345900003

11:20:25

SET BASE POSTION: OK

Type: PC1

Latitude: 47 17'56.29054"N Longitude: 001 30'32.58254"W

Height: +88.225m

Example 2: Asking the receiver to use the last computed position as the reference position

POS CUR

SP85 5345900003

11:21:15

SET BASE POSITION: OK

Type: PC1

Latitude: 47 17'56.29054"N Longitude: 001 30'32.58254"W

Height: +88.225m

RADIO: Setting the Radio

Send this SMS to control the radio attached to the SP85.

Command Syntax:

1) Turning on the internal radio:

RADIO<sp>ON

2) Setting the radio channel after turning on the radio:

RADIO<sp>CHN<sp>{internal_or_external_radio}<sp>{radio_channel}

3) Turning off the internal radio:

RADIO<sp>OFF

Example 1: Turning on the radio:

RADIO ON

SP85 5345900003

11:18:05

RADIO ON: OK

Example 2: Setting the internal radio to use channel 2:

RADIO CHN INT 2

SP85 5345900003

11:13:05

RADIO CHN INT 2: OK

Channel: 2

RX Frequency: 444.0000MHz TX Frequency: 445.0000MHz

NOTE: The SP85 response also returns the two frequencies corresponding to the choice of a given channel.

Example 3: Turning off the radio:

RADIO OFF

SP85 5345900003

11:27:16

RADIO OFF: OK

REC: Setting the Recording Mode

Send this SMS to control raw data recording in a remote SP85.

Command Syntax:

1) Starting recording raw data to the current memory at the currently selected recording rate:

REC<sp>ON

2) Starting recording raw data to the current memory at the specified recording rate:

REC<sp>ON<sp>{recording_rate}

3) Ending raw data recording:

REC<sp>OFF

Example 1: Starting raw data recording at 0.1 second:

REC ON 0.1

SP85 5345900003

11:32:04

REC ON 0.10: OK

Example 2: Ending raw data recording:

REC OFF

SP85 5345900003

11:35:19

REC OFF: OK

SEND LOG: Emailing Log Files

Send this SMS to ask the remote SP85 to email its last log files to the specified email address.

Command Syntax:

SEND<sp>LOG<sp>{x_last_log_files}<sp>{email_address}

Example: Emailing the last 4 log files to the specified email address:

SEND LOG 4 rxg217@mmwerx.com SP85 5345900003

11.40.11

SEND LOG 4 rxg217@mmwerx.com: OK 4 log file(s) sent

SEND PAR: Emailing Receiver Parameters

Send this SMS to ask the remote SP85 to email all its operating parameters to the specified email address.

Command SMS Syntax:

SEND<sp>PAR<sp>{email_address}

Example: Emailing all SP85 operating parameters to the specified email address:

SEND PAR rxg217@mmwerx.com SP85 5345900003

11.42.51

SEND PAR rxg217@mmwerx.com: OK

Using the SP85 Built-in Electronic Tiltmeter

Benefit

When using the pole level to place the antenna phase center exactly over the surveyed point just before logging its position, you need to have an eye on the pole level and the other on the data collector screen, making your best to have the pole vertical at the very moment the point position is being logged. This is a critical phase.

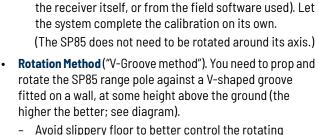
With the SP85 built-in tiltmeter, the level information is forwarded directly to the field software and you don't need to look away from the data collector screen during the procedure:

- First you make the pole vertical following the eLevel instructions displayed on the data collector screen.
- Then, still looking at the data collector screen and keeping an eye on the eLevel, you can more comfortably take the necessary steps to log the point position while keeping the pole vertical.

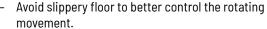
Rover Setup

Making the pole vertical by reading the eLevel information displayed on the data collector screen will be more intuitive if you set up the rover as follows:

- First you secure the SP85 at the top of the pole.
- Then you mount the data collector on the pole, making sure the orientation of its longitudinal axis is perpendicular to the SP85 front panel (see picture).


Calibrating the Tiltmeter

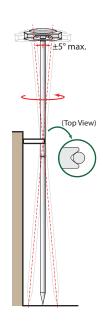
Calibration Methods


Use one of the two methods below to calibrate the tiltmeter:

- Auto-Null Method (Stable Method). This is the simplest method:
 - Secure the SP85 on top of an accurately leveled tripod or range pole and turn it on.

NOTE: The accuracy of the eBubble depends on the accuracy of the physical bubble used to calibrate it. Thus it is important that the physical bubble be properly calibrated.

Run a calibration (this can be done either directly from

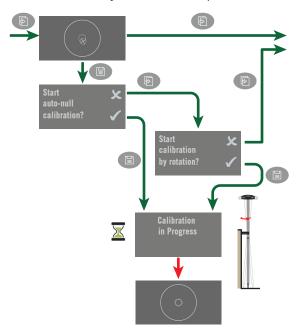

- The range pole does not need to be strictly vertical. A tilt angle of ±5° maximum while rotating the pole is tolerated throughout the calibration procedure.
- After turning on the SP85 and starting calibration (either from the receiver or the field software), start rotating the pole around its axis at a regular and slow speed, keeping the pole blocked into the V-groove (rotate clockwise or anti-clockwise, but always in the same direction).
- Keep the pole rotating to cover an angle of between 360° and 540° (one to 1.5 full rotation) within the next 30 seconds.

If calibration is successful, the receiver will buzz once: you can stop rotating the receiver around its pole. It will buzz twice if calibration fails, prompting you to resume the procedure. A failing calibration is usually the result of unsteady, too slow or too fast rotation.

How Often Do I Need to Calibrate the Built-in Tiltmeter? The SP85 tiltmeter should be calibrated every 30 days, or more often if a message issued by the SP85 asks you to do so. You may re-calibrate the tiltmeter as often as you wish.

NOTE: The electronic tiltmeter is affected by the temperature of the receiver, which will expire the calibration if the current temperature inside the receiver is more than 30 degrees Celsius different to when the last calibration was performed. This forces you to recalibrate the electronic tiltmeter.

When calibrating the electronic tiltmeter, the pole the GNSS receiver is on should be as vertical and as stable as possible. In practice this means using at least a bipod to hold the pole as still as possible.



Furthermore, a bent pole will affect the measured tilt. If you calibrate the electronic tiltmeter using a bent pole and then change poles, the accuracy of points will be affected. Also, if you calibrate using a straight pole and then change to a bent pole, the receiver will not be plumb even though the electronic bubble will say it is, again affecting the accuracy of the measured points.

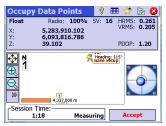
Calibrating the Tiltmeter in Standalone Mode

The tiltmeter can be calibrated directly from the SP85 front panel screen.

- Press repeatedly until the eLevel screen is displayed.
- Then press to enter the calibration mode. Follow the instructions in the flowchart below to complete a calibration according to one of the two possible methods.

Calibrating the Tiltmeter With Survey Pro

Unless already there, make the eLevel function available in Quick Pick (i.e. from the yellow star located in the Survey Pro command bar). You need to do this only once:


- Click on Quick Pick in the command bar and select Quick
 Pick Editor at the bottom of the list.
- · Select Extras from the Menu Items field.
- Select **eLevel Bubble** in the list just underneath.
- Tap on the Add--> button. The eLevel Bubble function is added at the bottom of the Quick Pick list. It can now be run directly from this list.

Configure Survey Pro to operate with your SP85 using the desired receiver profile, then start calibration:

- Run eLevel Bubble from Quick Pick
- Tap on Calibrate. This opens the Calibration screen.
 At the top of the screen is the remaining time before calibration should be resumed.
 - At the bottom of the screen you may choose the time allowed between two calibrations (can be set between 1 and 30 days)
- Choose the calibration method (Auto-Null or Rotate)
- Tap **Start** and follow the instructions. When calibration is complete, the message "**Calibration** is **done**." is displayed.
- Tap OK, close the Calibration window, then the eLevel Bubble window.

Using the eLevel in Survey Pro

The eLevel is always shown on the point logging screens.

If the **eLevel Bubble** check box has been activated on the **Meas. Mode** tab for a given type of point (**Data**, **Topo**, **Check**, etc.), Survey Pro will check that the receiver is level before logging this type of point. If it's not, you won't be allowed to log the point.

If the **eLevel Bubble** check box is deactivated, you will still see the eLevel on the screen but Survey Pro will not stop you from logging the point if the receiver is not level.

REMINDER: To open the **Meas. Mode** tab, tap 🔯 on top of the logging screen.

Using the UHF Kit Option

The SP85 UHF kit is an option that you can use to implement a radio-based, standalone RTK base/rover system (see *Optional Accessories on page 3* for more details on all the items provided in this kit).

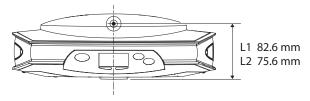
With this configuration, you have full control of your base as you can choose where and when to install and operate it. You will need two SP85 UHF kits to implement a complete radio-based RTK base/rover system. One kit will be installed on base side, the other on rover side.

You will also need two UHF whip antennas, one at the base, one at the rover. UHF antennas may be ordered separately, or as part of specific accessories kits that you may need if you wish to install the UHF antenna used at the base on a separate pole. See Other Optional Accessories on page 4 for further details. Configuring your radio modules is required before you can use them. This procedure is discussed in Configuring the UHF Module on page 82.

Internal vs. External Power Source for a Base Using a UHF Radio Transmitter: This point has already been discussed when introducing the possible base setups. Please refer to Internal vs. External Power Source on page 39.

When a radio is used at the base, there is more power needed than in any other base setup. In this case, the use of an external power source (a 12 V battery) is recommended, especially if the base is operated unattended for a full day's work.

Installing the UHF Module into the Receiver



- · Power off the SP85 and turn it upside down.
- Use the L-shaped Torx screwdriver provided in the SP85 UHF kit to loosen and remove the four screws ([1]) securing the 5/8" threaded insert plate.
- Insert a finger into the 5/8" threaded hole ([2]), then gently
 pull the plate out of the receiver, making sure you free the
 ribbon cable anchored to the plate without damaging it
 ([3]).
- Put away the 5/8" threaded insert plate in a safe place, possibly for subsequent use.
- Take a look at the instructions printed on the label located in the bottom of the recess.
- Connect the end of the ribbon cable (a 12-contact flat connector) to the UHF module ([4]) as instructed on the label (point 1).
- Insert the UHF module into the recess ([5]) as instructed on the label (point 2).
- Re-use the four screws and Torx screwdriver to secure the UHF module onto the receiver. Tighten the screws to preserve receiver watertightness (torque meter: 3 N.m).

NOTE: The insertion of the UHF module slightly modifies the ARP (*Antenna Reference Point*) of the GNSS antenna, thus reducing the antenna phase center offset by 2mm (see diagram below).

Be aware that the receiver will automatically apply this delta following the installation of the UHF module by assigning a different antenna name to the SP85. In fact, two distinct antenna names exist for the SP85. One describes the antenna parameters when no UHF module is used (antenna name with "-1" suffix), and the other when the UHF module is used ("-2" suffix).

When post-processing SP85 raw data files (G-files), SPSO (Spectra Precision Survey Office software) will automatically

recognize the presence or not of the UHF module while you collected your raw data by analyzing the antenna name mentioned in the G-files.

Configuring the UHF Module

 Use cable P/N59044-10-SPN from the SP85 Office Power Kit to connect the receiver to the computer (see diagram below).

*: All these items are part of the SP85 Office Power Kit P/N 94336 (option). Use the RS232-to-USB adapter cable if your computer is fitted with USB connectors (and no DB9 connector).

NOTE: Cable P/N59044-10-SPN is a Y-shaped cable also allowing you to power the receiver from an AC outlet (via the AC/DC power block) rather than from the receiver batteries (see also *Charging Batteries, Scenario #2 on page 53*). When applied to the receiver's DC input, the external power source has priority over the internal batteries, which means the battery or batteries can be left safely inside the receiver (none of them will be drained).

- Press simultaneously
 + to switch the receiver to **Service mode**. Through this mode, the receiver offers direct access to the UHF module via the receiver's port A.
- Run Pacific Crest ADLCONF software on the computer and configure the radio to meet your requirements. Refer to ADLCONF instructions to complete this step.

Completing Rover Radio Setup

Once the UHF module has been secured to the receiver (see Installing the UHF Module into the Receiver on page 81) and properly configured, do the following:

- Screw the UHF whip antenna onto the coaxial connector of the UHF module ([6]). The antenna will therefore be oriented vertically upside down when used.
 NOTE: Being placed in vertical position, the UHF antenna will stay as sensitive as if it were oriented the other way round.
- Take the top rod of the fiberglass range pole provided in the SP85 UHF kit. Insert first its end with special tapping, not 5/8" tapping, around the UHF antenna ([7]).
 CAUTION - This special tapping uses a thinner thread compared to the standard 5/8" one. For this reason, be careful when you start screwing the rod into the UHF module. Make sure the rod fits well in the threaded part of the UHF module.
- Screw the top rod onto the threaded part of the UHF module. Spin the rod, rather than the receiver, when doing this.
- The receiver + top rod assembly can then be mounted on top of the other part of the range pole (the bottom rod).
- Complete the setup of your SP85 + UHF radio rover system by attaching the data collector onto the range pole. You are now ready for a survey.

Completing Base Radio Setup With External UHF Antenna

Two types of base setups are possible with an external UHF antenna:

 The UHF antenna may be installed in vertical position on the same tripod as the base receiver.

For this setup, you may use one of the available two PacCrest radio accessory kit options.(see Other Optional Accessories on page 4; the two kits are similar in terms of the hardware provided to install the UHF antenna).

Follow the instructions below:

- Secure the bracket onto one of the legs of the tripod (see [8]).
- If you wish to keep GNSS reception optimum, you may keep the UHF antenna below the GNSS receiver by fastening the counterpoise of the antenna directly onto the bracket (see [9]). (The antenna counterpoise is part of, and is located at one end of the coaxial cable provided.) Then screw the antenna support onto the counterpoise and mount the UHF antenna on top of it (see [10]).
- If you prefer to optimize the radio range with this setup, raise the UHF antenna by inserting the two-element pole provided between the bracket and the antenna counterpoise (see [11]).
- The UHF antenna may be installed on a separate tripod at some distance from the base receiver, but still remaining compatible with the length of the coaxial cable you will be using. The UHF antenna should be installed at the highest possible height.

On receiver side, after the UHF module has been secured to the receiver and properly configured, do the following whatever your choice of antenna setup:

- Pass the male connector of the coaxial adapter cable (PN 96845) through the oblong hole of the pole extension (PN 95672) and make it go out of it at its upper end (see [12]).
- · Connect it to the coaxial output of the UHF module.
- Screw the pole extension to the threaded part on the UHF module (see [13]). Spin the pole extension, rather than the receiver, taking care not to jam the coaxial cable extension when doing this.
- Secure the receiver/pole extension assembly onto the tripod.
- Connect the other end (female connector) of the coaxial cable extension to the coaxial cable coming down from the UHF antenna.
- Set up the base on the chosen reference point.

Completing Base Radio Setup With Internal UHF Antenna

The UHF antenna is connected directly to the UHF module and is hidden in the pole. The pole is installed on top of a tripod. Follow the same instructions as with a rover (see Completing Rover Radio Setup on page 83) to install the internal UHF antenna, but this time you will be using:

- A quarter-wave antenna (P/N 67410-11 or 67410-12, depending on the frequency band used) instead of a halfwave antenna. This shorter antenna is available as an optional accessory (see Other Optional Accessories on page 4).
- The pole extension with the oblong hole (from the UHF option kit). You don't need to use the coaxial adapter cable.

Running the SP85 Web Server Interface

Introduction

The SP85 Web Server interface is a web-based, receiver built-in application providing remote access to the receiver's operating parameters. The Web Server is a first-choice tool to review or modify the configuration of a receiver.

You need a web browser running on a controller (data collector, field computer, mobile phone, etc.) to start the Web Server.

Running the Web Server requires that an IP connection be implemented between the controller and the SP85. On receiver side, WiFi must be used (the receiver modem cannot be used here because it is more and more difficult, not to say impossible, to connect to a modem through a public, static IP address).

The embedded WiFi device may be used in two different modes:

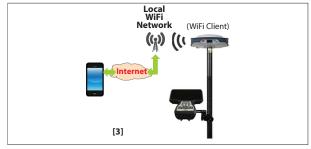
- Access Point mode
- Client mode.

The easiest way to run the Web Server is undoubtedly to set the WiFi device in Access Point mode. This chapter however deals with the two possible WiFi modes through which you can access the SP85 Web Server interface.

WiFi in Access Point Mode

This is the easiest way to implement the IP connection.

 Turn on the WiFi device from the dedicated SP85 display screen (see Wifi Power Control Screen on page 26). The device is then automatically switched to the WiFi Access Point mode. Then type the following IP address in the web browser: 192.168.130.1


Enter the login and password (defaults: "admin" for login, "password" for password). This launches the SP85 Web Server interface: Its home page appears in the web browser.

WiFi in Client Mode

If however the SP85 WiFi device is currently used in client mode (busy receiving RTK corrections for example), then you may still use it in this mode to run the SP85 Web Server interface (see the three possible cases in the diagram below).

- [1]: The smart phone can be set to be a WiFi hotspot. The SP85 just has to connect to the WiFi network controlled by the smart phone. Once connected to this network, the SP85 provides its IP address on the Receiver Identification screen. Just type this address in a web browser on the smart phone to start the SP85 Web Server interface.
- [2]: Both the smart phone and the SP85 are in the vicinity of a third-party local WiFi network. Once the SP85 and smart phone are both connected to the WiFi network, read the SP85's IP address on the receiver identification screen. On the smart phone, run a web browser and type the IP address. This starts the SP85 Web Server interface.

 [3]: The path used for the IP connection is here more heterogeneous (modem on controller side, Internet, local WiFi network on receiver side): You will probably need help from a network specialist to make that connection work.

The general procedure to run the SP85 Web Server interface in this case is outlined below:

- Use your field software (Survey Pro see subsection below for details) to search for and connect to a local WiFi network (this automatically turns the WiFi device into Client mode).
 - If you are using another field software application, please contact Technical Support.
- 2. Use the SP85 front panel screen to turn on WiFi. After the WiFi device has been turned on, two scenarios are then possible:
 - The SP85 has the name of a WiFi network in memory and automatic connection to this network at power up has been requested. If this network is working and within range, then the SP85 will automatically connect to this network.
 - The SP85 has no WiFi network name in memory. Then you should find which WiFi network to use and ask the SP85 to connect to it before you move on to the next step. See the two subsections below.
- Select the Receiver ID screen on the front panel display to read and write down the receiver's IP address. This address is provided by the local WiFi network and is shown on the Receiver ID screen, in the lower line (see Receiver Identification on page 19).
- 4. If you are using setup type [2], make sure the controller is connected to the same WiFi network as the SP85.
- 5. On your controller, run a web browser and then type the IP address you read on the SP85 front panel. Enter the login and password (defaults: "admin" for login, "changeme" for password). This launches the SP85 Web Server interface: Its home page appears in the web browser.
 - For more information on the application, open its on-line Help.

Connecting to a WiFi Network Using Survey Pro

- Create a "Net" receiver profile for your receiver.
- Go to Manage Instruments and select this receiver profile.
- Tap on the button corresponding to this receiver profile.
- Open the **Modem** tab.
- Select Internal Wi-Fi in the Data Modem scroll-down list.
 Survey Pro lists the detected local WiFi networks. You may use the Refresh button to update the list of available networks (tapping on this button starts a new WiFi scan).
- In the list, tap and hold down the name of the chosen WiFi network, then select **Connect** from the pop-up menu.
- Enter the WiFi key specific to this network and check on Connect to this network automatically when available.
- Tap and let the receiver connect to the WiFi network.

Spectra Loader Software Utility

Use Spectra Spectra Loader software to:

- 1. Upgrade the receiver firmware
- 2. Install new firmware options
- 3. Validate CenterPoint RTX subscription.
- 4. Read the warranty expiration date of a GNSS receiver.

Installing Spectra Loader

Spectra Loader can be downloaded from:

https://spectrageospatial.com/sp85-gnss-receiver/ (See SUPPORT section.)

The install file is an exe file. Simply double-click on this file to start installation. Follow the instructions on the screen to complete the installation.

Getting Started With Spectra Loader

Spectra Loader will use either a serial (RS232), Bluetooth or USB connection to communicate with the receiver. USB is recommended

- Connect your computer to the SP85 using a USB connection.
- 2. Run Spectra Loader on your computer.
- Select the computer's port ID used to communicate with the receiver. This port ID should correspond to the computer's USB port.

NOTE: An easy way to identify which port ID on your computer is the USB port is to run Spectra Loader first without the USB connection and read the list of available ports in Spectra Loader. After restoring the USB connection with the receiver, check that list again. An extra port ID will then be listed, being the one assigned to the USB port. Select that port. (You don't need to define a baud rate for a USB port.)

 To upgrade receiver firmware, install a new firmware option or validate a CenterPoint RTX subscription, see subsections below.

You are not allowed to upgrade a receiver if anti-theft or/and start up protection is active or if the receiver is operated with an inprogress or expired validity period.

Upgrading Receiver Firmware

Firmware upgrades will be downloadable from the Spectra Geospatial website in the form of compressed ".tar" files. The name of the ".tar" file, as well as the step-by step upgrade procedure will be given in the accompanying *Release Note*.

Completing a firmware upgrade procedure will take up to 10 minutes. For this reason, it must be run with the receiver powered from either a properly charged internal battery or using an external power source.

Unless otherwise specified in the *Release Note* attached to the upgrade package, follow the instructions below to complete the upgrade of your receiver:

- 1. Follow the first three steps described in Getting Started With Spectra Loader on page 90.
- Click Upgrade. Wait until Spectra Loader has detected the receiver.
- 3. Browse your computer in search of the upgrade file.
- 4. Select the file and click **Open**. Spectra Loader then provides information on the currently installed firmware, the new firmware as well as the current state of the battery (if the internal battery is used).

This should tell you if you can run the upgrade with the battery, or rather use a fresh one or an external power supply.

- 5. When you are ready, click on the **Update** button.
- Let the receiver proceed with the upgrade (a status window is displayed showing a progress bar). Take care not to turn off the receiver while the upgrade is in progress.

- After successful completion of the upgrade, click Close to close the status window. Check that the new firmware is now installed (version and date displayed in the Spectra Loader main window).
- 8. Click Close again, then Exit to guit Spectra Loader.

Other Receiver Firmware Upgrade Method Just Using a Properly Formatted SD Card (64 MB minimum in size):

- 1. Check that the SD card used for the upgrade is not write-protected and then insert it into your computer.
- 2. Using a file browser, copy the ".tar" file to the root directory of the SD card. Make sure there is only one ".tar" file present on the SD card. Delete those not used.
- 3. Remove the SD card from the computer.
- Make sure the receiver you want to upgrade is OFF and ready for upgrade (i.e. one sufficiently charged battery present or external AC/DC power block connected and on).
- 5. Insert the SD card now containing the upgrade file into the receiver.
- 6. Hold down and then press for about 2 to 3 seconds. After about 10 seconds, the Spectra Geospatial logo shown on the screen is replaced with the "Uploading mode" message, meaning that the upgrade procedure has now started.
- Let the receiver proceed with the upgrade. Take care not to turn off the receiver while the upgrade is in progress.

The receiver screen will display successively:

Uploading mode

Upgrading Firmware

Start Upgrade

Step 1/9

Step 2/9

Step 3/9

Step 4/9

Step 5/9

Rebooting

<Blank>

Updating System

{Spectra Geospatial logo}

Upgrading Firmware

Start Upgrade

Step 6/9

Step 7/9

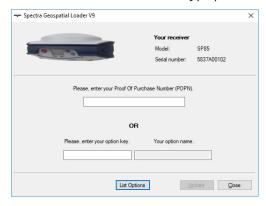
Step 8/9

Step 9/9
Rebooting
<Blank>
{Spectra Geospatial logo}
{Normal receiver startup}

- 8. Remove the SD card from the receiver.
- 9. Check that the new firmware is installed (read the second line on the Receiver Identification Screen).

Installing a Firmware Option

Before you start this procedure, make sure you have received an email from Spectra Geospatial containing the POPN corresponding to the firmware option you have purchased.


NOTE : Your computer needs an Internet connection to install a firmware option using a POPN.

With the POPN now in your possession, do the following to install a new firmware option:

- Follow the first three steps described in *Getting Started* With Spectra Loader on page 90.
- Click Option. Wait until Spectra Loader has detected the receiver.

Spectra Loader then displays the serial number of your receiver and prompts you to enter the POPN.

(There is an alternate method to activate a firmware option, which is to enter the option key – provided by Spectra Geospatial – corresponding to the desired firmware option, and to specify that option in the nearby field. This method may be used by Spectra Tech Support for maintenance or troubleshooting purposes.)

- Enter the POPN and then click on Update. Let the receiver proceed with the installation of the firmware option (a status window is displayed showing a progress bar). Take care not to turn off the receiver while the installation is in progress.
- After successful completion of the installation, you may
 use the List Options button to check that the newly
 installed option is now in the list of installed options. Then
 click Close to close the list of options.
- Click Close again, then Exit to quit Spectra Loader.

Activating a CenterPoint RTX Subscription

After you have purchased a CenterPoint RTX subscription, Trimble Positioning Services will email you an activation code. Use the same procedure as the one used to install a firmware option (see Installing a Firmware Option on page 93; the available RTX subscriptions are listed as firmware options). The only difference is that no POPN is provided for this procedure. Just enter the code provided by Trimble Positioning Services and specify the type of subscription you purchased before you click **Update**.

NOTE: SP85 only supports CenterPoint RTX.

Reading Receiver Warranty Expiration Date

database for the warranty expiration date of your GNSS receiver. (After a receiver warranty has expired, remember receiver firmware upgrades are no longer free of charge.) You don't need to have your receiver connected to Spectra Loader to read its warranty expiration date. Just enter its type and serial number and Spectra Loader will return this information to you, provided there is an active Internet connection on your computer, and your receiver is known to

Spectra Loader can be used to query the Spectra Geospatial

- Run Spectra Loader on your computer.
- · Click on Warranty.

the database.

• Select the type of your receiver and enter its serial number.

 Click on Compute. Spectra Loader returns the warranty expiration date in a field underneath the Compute button. Additionally, Spectra Loader generates a proprietary command that you can run in your receiver if you want to be sure your receiver has the correct warranty expiration date in memory. Carefully write down this command

NOTE: When upgrading the receiver firmware using a computer with an Internet connection, be aware Spectra Loader will at the same time automatically check the warranty expiration date of your receiver. Spectra Loader will ask you if it can update this date if it is found wrong.

Spectra File Manager Software Utility

Spectra File Manager allows you to copy "log" files and G-files directly from the receiver's internal memory to the desired folder on your office computer.

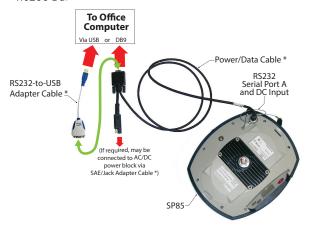
Additionally you can delete any G-file or "log" file from the receiver's internal memory.

G-files are GNSS raw data files in proprietary format (ATOM). "Log" files are editable text files listing all the operations performed by the receiver in one day.

Spectra File Manager is available from the Spectra Geospatial website as an exe file (SPFileManagerSetup.exe) through the link below:

https://spectrageospatial.com/sp85-gnss-receiver/ (See SUPPORT section)

Installing Spectra File Manager


Spectra File Manager is very easy to install:

- Download the exe file from the Spectra Geospatial website (use above link).
- Double-click on the exe file to complete the installation.

Connecting SP85 to your Computer

There are different ways of communicating with the receiver:

- Through Bluetooth.
- Through an RS232 line, using port A on the receiver, and a DB9 or USB socket, on computer side (see illustration below). The default speed for port A on receiver side is 115200 Bd.

*: All these items are part of the Office Power Kit P/N 94336 (option).

The Office Power Kit required for this serial connection is designed to let you power the receiver from an AC outlet rather than from the receiver battery (see illustration above).

When applied to the receiver's DC input, the external power source has priority over the internal battery, which means the battery can be left safely inside the receiver (it won't be drained).

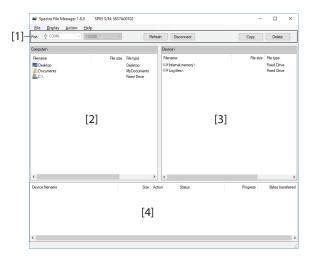
IMPORTANT: Be sure you align the red markings (a red dot on the connector, a red line on the socket) before pushing the Lemo connector in. Conversely, when it's time to disconnect the Lemo connector, please use the attached metal strap to pull the connector out.

Through USB. Connect the SP85 to the computer via the USB-to Mini Universal cable provided.

The first time you make this connection, the required USB driver will be installed automatically on the computer to make that connection possible.

When using the receiver's USB port, you can still use the previous setup to power the receiver through its DC input (in this case, you don't need to connect the DB9 connector of the Power/Data cable to the computer).

In this setup, you can alternately replace the Power/Data cable (P/N 59044-10) from the Office Power Kit with cable P/N 95715 from the Field Power Kit (option). See diagram below.



- *: This item is part of the Office Power Kit P/N 94336 (option).
- **: This item is part of the Field Power Kit P/N 94335 (option)

IMPORTANT: After removing the USB cable, and before going back to the field with your receiver, please place the protection flap back on the USB connector.

Getting Started With Spectra File Manager

Double-click on . The Spectra File Manager window which then appears is detailed below.

[1]: Spectra File Manager toolbar. This toolbar consists of the following items:

- Port and baud rate scroll-down lists: Let you choose which serial port is used on computer side for the connection with the receiver (baud rate only makes sense when an RS232 serial line is used). Use 115200 Bd to communicate with SP85.
- Connect / Refresh button: Connect allows you to activate the connection between the computer and the receiver via the chosen serial line.
 - When the connection is established, the button is changed into **Refresh**, which allows you to update the content of the two *Spectra File Manager* panes ([2] and [3] described below)
- Disconnect button: Allows you to deactivate the connection currently established between the computer and the receiver.

- Copy button: Copies the file(s) selected in pane [3] to pane
 [2]. In pane [2], you have to open the folder where to copy to before clicking on the Copy button.
 - NOTE: Copied files have different creation dates and times compared to those of their respective original files. The new dates and times are those corresponding to when the files were copied.
- Delete button: Deletes the files currently selected in pane
 [2] or [3].
- [2]: Pane showing the content of the currently open folder on computer side.
- [3]: Pane showing the content of the currently open folder on receiver side. The receiver's root folder contains two to four sub-folders:
- Internal memory: Lists all G-files recorded by the receiver in its internal memory
- Log files: Contains log files (one per day). Each log file lists all the actions performed by the receiver in one day.
- SD Card, if one is currently inserted in the receiver.
- USB key, if one is currently connected to the receiver.

To open a folder, double-click on it. To go back to the parent folder, click on

[4]: Pane showing copy/delete operations in progress, and all those completed since the connection with the receiver was established. This pane is cleared at the beginning of each new working session of *Spectra File Manager*.

Establishing a Connection with the Receiver

- Set up the physical connection (RS232 or USB as explained in Connecting SP85 to your Computer on page 96)
- Turn on the receiver.
- Launch Spectra File Manager on your computer. This opens the Spectra File Manager window.
- For an RS232 connection, first edit the line settings
 (default baud rate for receiver is 115200 Bd) then click on
 the Connect button. For a USB connection, select the right
 COM port (see also the Note in Getting Started With Spectra
 Loader on page 90) and then click on the Connect button.

As a result, the pane on the right-hand side of the window lists the two or three folders that can be seen on the receiver.

Copying Files to the Office Computer

- In the right-hand side of the window, double-click on the sub-folder containing the files you want to copy to the computer.
 - (If needed, click on). to go back to the parent folder and open another sub-folder.)
- In the left-hand side of the window, browse your computer to the folder where to copy the files (recipient folder).
- In the right-hand side of the window, highlight the file(s) you want to copy.
- Click on the **Copy** button. Files are then copied, as requested. The lower part of the screen provides reports information on the copy operations in progress.

Deleting Files from the Receiver

- In the right-hand side of the window, double-click on the sub-folder containing the files you want to delete from the receiver.
 - (If needed, click on). to go back to the parent folder and open another sub-folder.)
- Still in the right-hand side of the window, highlight the file(s) you want to delete.
- Click on the **Delete** button. Files are then deleted. The lower part of the screen provides reports information on the delete operations in progress.

Restoring Factory Settings

This is done by pressing simultaneously the three front panel buttons (Power + Scroll + Log). All factory settings are restored, except the following, which are kept unchanged:

- GSM
 - PIN code
 - APN
 - Login
 - Password
 - Network
- Bluetooth
 - PIN code
 - Receiver's Bluetooth name
- WiFi
 - IP
 - Mask
 - Gateway
 - DNS1, DNS2
- Anti-Theft & startup protections
 - Current states (enabled or disabled)
 - Password
 - Anti-Theft position
 - Last position computed
 - Phone numbers and email addresses programmed to receive alerts in case of theft.
- · E-mail settings.

Restoring factory settings is not allowed in any of the following cases:

- · Anti-theft protection is active
- · Startup protection is active
- A validity period is active (whether still in progress or over).
 (Validity periods are designed to let users work with the receiver in a predefined configuration and for a limited period of time.)

Alerts

The table below lists some of the level-1 and level-2 alerts you should know.

All indicate problems that can be remedied without external support. The ANTI-THEFT ALARM is a special one as it requires that you take the necessary steps to get your receiver back. These are left to your own initiative.

#	Alert	Remedy	Level
30	No SIM card detected	Insert SIM card, or replace (silent) SIM card.	2
41	Memory full	Free memory space before doing anything else.	1
42	SD card removed while file opened	File may not have been closed correctly and so the file may be lost. Insert the SD card back and start a new recording sequence. Data will be recorded in a new file. Remember you shouldn't remove the SD card while it's being used.	2
49	Radio power not allowed	May happen when the UHF option is used as a transmitter and the internal temperature does not allow the initially requested power to be radiated. Full power will be restored when the internal temperature allows it.	2
58	Low battery	Receiver's last battery going low. Insert fresh batteries.	1
59	Low voltage	External power source going low. Change external power source.	1
82	Not enough space left	Free memory space before doing anything else.	2
88	WARRANTY END DATE	Your receiver's warranty for major free firmware upgrades has expired.	1
96	ANTI-THEFT ALARM	Theft detected: Take the necessary steps based on the notifications received via email or SMS. If it's a false alarm due to misuse of the anti-theft protection (you are standing next to the receiver), use your data collector to deactivate the Anti-Theft protection and stop the alarm.	1
99	SIM card locked	Take the necessary steps to unlock the SIM card, then try again.	1
103	No SD card detected	Insert SD card, or replace (silent) SD card.	2
104	UPGRADE FAILED	Resume upgrade procedure from the beginning.	1

If the receiver reports some other alerts, these may result only from temporary problems (e.g. from the configuration or operation of the modem, WiFi, network, UHF option, etc.).

Acknowledge the alert from the receiver front panel, make the necessary corrections (if required) and check that everything goes back to normal afterwards.

If the problem persists, please contact Technical Support.

Technical Specifications

GNSS Characteristics

- 600 GNSS channels
 - GPS L1 C/A, L1P (Y), L2C, L2P (Y), L5
 - GLONASS L1 C/A, L1P, L2 C/A, L2P, L3
 - BeiDou (phase 2) B1, B2
 - Galileo E1, E5a, E5b
 - QZSS L1 C/A, L1C, L2C, L5
 - IRNSS L5
 - SBAS L1C/A, L5 (WAAS, EGNOS, MSAS, GAGAN, SDCM)
 - I -Band MMS
- Patented Z-Blade technology for optimal GNSS performance:
 - Full utilization of signals from all 7 GNSS systems (GPS, GLONASS, BeiDou, Galileo, QZSS, SBAS and IRNSS)
 - Enhanced GNSS-centric algorithm: Fully independent GNSS signal tracking and optimal data processing, including GPS-only, GLONASS-only, Galileo-only or BeiDou-only solution (Autonomous to full RTK)
- Fast Search engine for quick acquisition and reacquisition of GNSS signals.
- SBAS ranging for using SBAS code & carrier observations and orbits in RTK processing
- Patented Strobe™ Correlator for reduced GNSS multi-path
- Up to 20 Hz real-time raw data (code & carrier and position output)
- Supported data formats: ATOM, CMR, CMR+, RTCM 2.1, 2.2, 2.3, 3.0, 3.1 and 3.2 (including MSM), CMRx and sCMRx (rover only)
- NMEA 0183 messages output

Real-Time Accuracy (RMS)

(1)(2)

SBAS (WAAS/EGNOS/MSAS/GAGAN):

Horizontal: < 50 cm (1.64 ft)

Vertical: < 85 cm (2.79 ft)

Real-Time DGPS Position:

Horizontal: 25 cm (0.82 ft) + 1 ppm

Vertical: 50 cm (1.64 ft) + 1 ppm

Real-Time Kinematic Position (RTK):

- Horizontal: 8 mm (0.026 ft) + 1 ppm
- Vertical: 15 mm (0.049 ft) + 1 ppm

Network RTK (8):

- Horizontal: 8 mm (0.026 ft) + 0.5 ppm
- Vertical: 15 mm (0.049 ft) + 0.5 ppm

Real-Time Performance

- Instant-RTK® initialization
 - Typically 2 seconds for baselines less than 20 km
 - Reliability: up to 99.9%
- RTK initialization range: over 40 km

Post-Processing Accuracy (RMS)

(1)(2)

Static & Fast Static:

- Horizontal: 3 mm (0.118") + 0.5 ppm
- Vertical: 5 mm (0.196") + 0.5 ppm

High-precision Static (3):

- Horizontal: 3 mm (0.118") + 0.1 ppm
- Vertical: 3.5 mm (0.137") + 0.4 ppm

Data Logging Characteristics

Recording Interval: 0.05 - 999 seconds

Physical Characteristics

- Size: 22.2 x 19.4 x 7.5 cm (8.7 x 7.6 x 3.0")
- Weight:

(alone, without battery): 1.17 kg (2.57 lb)

With two batteries: 1.3 kg

With two batteries and UHF radio: 1.40 kg

 User interface: Graphical PMOLED display; Web UI (accessible via WiFi) for easy configuration, operation, status reading and data transfer.

I/O interface:

- RS232 serial link
- USB 2.0/UART
- Bluetooth 5.0 Dual Mode
- WiFi (802.11 b/g/n)
- 3.5G quad-band GSM (850/900/1800/1900 MHz)/pentaband UMTS module (800/850/900/1900/2100 MHz)

Memory:

- 4 GB internal memory NAND Flash (3.5 GB user data)
- Over 2 years of 15 sec. raw GNSS data from 14 satellites
- Removable SD/SDHC memory card (up to 32 GB)

Operation:

- RTK rover & base
- RTK network rover: VRS, FKP, MAC
- NTRIP, Direct IP
- CSD mode
- Post-processing
- RTK Bridge
- UHF repeater
- UHF networking
- Trimble RTX (satellite and cellular/IP)

Environmental characteristics:

- Operating temperature: -40° to $+65^{\circ}$ C (-40° to $+149^{\circ}$ F) (4) (5)(6)
- Charging batteries left inside the receiver using an external power source: The ambient temperature should not exceed +40°C (104°F)
- Storage temperature: -40° to $+85^{\circ}$ C (-40° to $+185^{\circ}$ F)(7)
- Humidity: 100% condensing
- IP67 waterproof, sealed against sand and dust
- Drop: 2 m pole drop on concrete
- Shock: ETS300 019
- Vibration: MIL-STD-810F

- Power characteristics:
 - 2 Li-lon hot-swappable batteries, 41.4 Wh (2 x 7.4 V, 2800 mAh)
 - Battery life time with two batteries: 10 hrs (GNSS On, and GSM or UHF Rx On)
 - External DC power: 9-28 V
 - (1) Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, satellite geometry and corrections availability and quality.
 - (2) Performance values assume minimum of five satellites, following the procedures recommended in the product manual. High multipath areas, high PDOP values and periods of severe atmospheric conditions may degrade performance.
 - (3) Long baselines, long occupations, precise ephemeris used
 - (4) At very low temperatures, the UHF module should not be used in the transmitter mode.
 - (5) At very high temperatures, an external battery may be required.
 - (6) With the UHF module (optional kit) used as a transmitter and radiating 2 W of RF power, the operating temperature range is limited to -40° to +55°C (-40° to +131°F).
 - (7) Without batteries. Batteries can be stored up to +70°C.
 - (8) Network RTK PPM values are referenced to the closest physical base station.

Standard & Optional System Components

See SP85 Packout on page 2.

Data Collectors and Software

The following options are available for use with SP85.

Data collectors:

- ST10 tablet
- Ranger 7
- Ranger 3
- T41
- MobileMapper 20
- MobileMapper 50

Field software:

- Survey Pro
- Survey Mobile (Android)
- SPace control app for 3rd party devices (Android)

Index

Davs since last calibration 20 **Symbols** "LOC" 20 Devices screens 21 "W84" 20 DGPS 17 Numerics Direct IP 21, 33, 37 5/8" threaded insert 6 Downloading raw data files 50 7G 1 Α el evel 20, 75 AC/DC power block 2, 52, 53 eLevel (calibration methods) 75 Adapters 3 Emailing settings 61 ADL accessory kits 4 Expiration date 94 ADI CONF 82 External power for a base 39 Alerts (list) 102 External power source 52 Alerts tab 60 **ANH 66** FFC 21 **ANR 66** Field software 106 Firmware upgrade 10, 91 Anti-theft 1, 56 ANTI-THEFT ALARM 57 FIXFD 17 ARP 8, 81 Flap (protection for SD and SIM cards) 7 **ATH 67** Flap (protection for USB connector) 8 ATL Recording screen 23 FI OAT 17 **ΔΗΤΩ 17** G Auto-Null method 75 Galileo 103 General Status screen 17 Backup RTK 35 GFTID 67 Backup transmission channel for GFTMFM 68 corrections (base) 37 GFTPOS 68 BASE 17 GFTPOWFR 69 GNSS centric 103 Battery charger 2, 53 Battery Information 18 GPS 103 Battery LEDs 15 н Battery LEDs Statuses 28 Hard case 2 Bluetooth 1 Height mark 9 C HFI P 69 Calibration (eLevel, standalone) 77 Host name 21 CenterPoint RTX 34 Central 33 Inserting batteries 13 Inserting cards 14 Charging batteries 53 Closing flaps 14 Install firmware option 93 CSD 33 ITRF2008 34 П Data collectors 106 I-Band 34 Data Link Information 17 Li-Ion battery 2, 11, 32, 52

I OC 20 Remote battery monitoring 31 Local base 37 Removing cards 14 Log button 5, 24 Repeater 21 Rotation method 76 М MFM 70 RTK Bridge 36 Memory Information 17 S Memory Management screen 25 S DGPS 17 Memory/SD Card screen 19 SBAS 103 MODF 71 SCR 21 Screen backlight 10 Modem Information 18 Modem power (control) 25 Screwdriver 3 Modem screen 21 Scroll button 5, 16 Mount point 21 SD card holder 7 SD Card, Bluetooth, USB information 18 NTRIP 21, 33, 37 Send Alert Messages 62 Send Anti-Theft Messages 63 PacCrest Y cable 4 SEND LOG 74 Password 61 SEND PAR 74 Password for anti-theft and startup Service mode 10, 82 protections 59 SHMP 8 Phase center location 8, 81 Shock absorber 6 Pole extension, 15 cm 3 SIM card holder 7 Pole extension, 7 cm 2 Slant measurement 9, 15 PNS 71 SMS (for remote control) 64 Soft bag for range pole 3 Position Solution screen 20 Special key combinations 10 Power button 5, 15 Power cables 3 Spectra File Manager 95, 98 Spectra File Manager (copy files) 100 Power cord kit 2 Spectra File Manager (delete files) 100 Power Off screen 27 Power/data cable 3 Spectra Loader 90 Power/Data connector 6 Starting occupation 49 Starting raw data recording 48 Prompt to enable Anti-Theft 62 Startup protection 59 0 0ZSS 103 Stopping occupation 49 Stopping raw data recording 49 Survey Pro 40, 60, 89 **RADIO 72** Radio 33, 37 Swapping (batteries) 1 Radio screen 21 Range pole, 2 m 3 Tape measure 2, 9 Raw data recording flowchart 47 TFRIAsat 40 Raw Data Recording Information 17 Test Anti-Theft 62 RFC 73 Tiltmeter (electronic, built-in) 75

Trapdoor (battery compartment) 13

Receiver Information screen 19

Trimble RTX 34
Trimble RTX Corrections Services 34
Trimble RTX subscription 94

U

UHF kit option 80 UHF module 3

UHF module (configuring) 82

UHF module (installing) 81

UHF option (base setup) 84

UHF option (rover setup) 83

UHF whip antenna 4

UHF+CSD (base) 37

Upgrade procedure (firmware) 91

Upgrade receiver fimware 91

USB driver 8

USB-to-mini universal cable 2

V

Vertical measurement (instrument height) 15

W

W84 20

Warranty (end of) 94

Web Server interface 86

Welcome screen 16

WiFi 1

WiFi hotspot 87

WiFi Information 18

Wifi power (control) 26

WIFi screen 22

Z

Z-Blade 1, 103